Tìm x thuộc Q , biết
a) x2 + 1 = 82
b) x2 + 7/4 = 23/4
c) (2x+3)2 = 25
Tìm x ϵ Q, biết:
a) x2 - 2 = 0
b) x2 + \(\dfrac{7}{4}\) = \(\dfrac{23}{4}\)
c) (x - 1)2 = 0
a) x² - 2 = 0
x² = 2
x = -√2 (loại) hoặc x = √2 (loại)
Vậy không tìm được x Q thỏa mãn đề bài
b) x² + 7/4 = 23/4
x² = 23/4 - 7/4
x² = 4
x = 2 (nhận) hoặc x = -2 (nhận)
Vậy x = -2; x = 2
c) (x - 1)² = 0
x - 1 = 0
x = 1 (nhận)
Vậy x = 1
a) x2 - 2 = 0
x2 = 2
x = √2 hoặc -√2 (loại) (x ϵ Q)
Vậy x ϵ rỗng
b) x2 + 7/4 =23/4
x2 = 23/4 - 7/4
x2 = 16/4 = 4
x2 = 4 = (-2)2 = 22
x2 = (-2)2
x = -2 (Nhận)
x2 = 2
x = 2 (Nhận)
Vậy x ϵ ( 2 , -2 )
c) (x-1)2 = 0
x-1 = 0
x = 1
Vậy x = 1
Tìm x, biết:
a) 3x(x - 1) + x - 1 = 0;
b) (x - 2)( x 2 + 2x + 7) + 2( x 2 - 4) - 5(x - 2) = 0;
c) ( 2 x - 1 ) 2 - 25 = 0;
d) x 3 + 27 + (x + 3)(x - 9) = 0.
a) x = 1; x = - 1 3 b) x = 2.
c) x = 3; x = -2. d) x = -3; x = 0; x = 2.
Bài 12: Tìm x ϵ Q, biết:
a. x2 + 1 = 82
b. x2 + 7/4 = 23/4
c. (2x+3)2 = 25
a. x2 + 1 = 82
=> x2 = 81
=> x2 = 92
=> x = 9 hoặc x = - 9
b. x2 + 7/4 = 23/4
=> x2 = 4
=> x2 = 22
=> x = 2 hoặc x = - 2
c. ( 2x + 3 )2 = 25
=> ( 2x + 3 )2 = 52
=> 2x + 3 = 5 hoặc 2x + 3 = - 5
=> x = 1 hoặc x = - 4
a, \(x^2+1=82\Leftrightarrow x^2=81\Leftrightarrow x=\pm9\)
b, \(x^2+\frac{7}{4}=\frac{23}{4}\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)
c, \(\left(2x+3\right)^2=25\Leftrightarrow2x+3=\pm5\Leftrightarrow\orbr{\begin{cases}2x+3=5\\2x+3=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-1\end{cases}}}\)
a) x2 + 1 = 82
<=> x2 = 81
<=> x2 = ( ±9 )2
<=> x = ±9
b) x2 + 7/4 = 23/4
<=> x2 = 4
<=> x2 = ( ±2 )2
<=> x = ±2
c) ( 2x + 3 )2 = 25
<=> ( 2x + 3 )2 = ( ±5 )2
<=> 2x + 3 = 5 hoặc 2x + 3 = -5
<=> x = 1 hoặc x = -4
Bài 5. Tìm x , biết rằng: a) x(x + 5)(x – 5) – (x + 2)(x2 – 2x + 4) = 3
b) (x – 3)3 – (x – 3)(x2 + 3x + 9) + 9(x + 1)2 = 15
c) (x+5)(x2 –5x +25) – (x – 7) = x3
d) (x+2)(x2 – 2x + 4) – x(x2 + 2) = 4
`a) x(x + 5)(x – 5) – (x + 2)(x^2 – 2x + 4) = 3`
`<=>x(x^2-25)-(x^3-8)=3`
`<=>x^3-25x-x^3+8=3`
`<=>-25x=-5`
`<=>x=1/5`
`b) (x – 3)^3 – (x – 3)(x^2 + 3x + 9) + 9(x + 1)^2 = 15`
`<=>x^3-9x^2+27x-27-(x^3-27)+9(x^2+2x+1)=15`
`<=>-9x^2+27x+9x^2+18x+9=15`
`<=>45x+9=15`
`<=>45x=6`
`<=>x=6/45=2/15`
`c) (x+5)(x^2 –5x +25) – (x – 7) = x^3`
`<=>x^3-125-x+7=x^3`
`<=>x^3-x-118=x^3`
`<=>-x-118=0`
`<=>-x=118<=>x=-118`
`d) (x+2)(x^2 – 2x + 4) – x(x^2 + 2) = 4 `
`<=>x^3+8-x^3-2x=4`
`<=>8-2x=4`
`<=>2x=4<=>x=2`
Tìm x biết :
a, (x-2).(x2 +2x +7) +2.( x2-4) -5 .(x-2) =0
b, 4x2 -25 -(2x-5) .(2x+7) =0
c, x3 +27 + (x+3) .(x-9)=0
Tìm x thuộc Q, biết :
a/ x2 + 1 = 2
b/ x2 + 7/4 = 23/4
c/ ( 2x+3)2 = 25
a/ x2 + 1 = 2 => x2 = 2 - 1 = 1 => x = 1 hoặc x=-1
b/ x2 + 7/4 = 23/4 => x2 = 23/4 - 7/4 = 4 => x=2 hoặc x=-2
c/ ( 2x+3)2 = 25 => ( 2x+3)2 = 5^2 => 2x+3 = 5 => 2x = 2 => x=1
Bài 5: Tìm nghiệm của các đa thức sau: Dạng 1: a) 4x + 9 b) -5x + 6 c) 7 – 2x d) 2x + 5 Dạng 2: a) ( x+ 5 ) ( x – 3) b) ( 2x – 6) ( x – 3) c) ( x – 2) ( 4x + 10 ) Dạng 3: a) x2 -2x b) x2 – 3x c) 3x2 – 4x d) ( 2x- 1)2 Dạng 4: a) x2 – 1 b) x2 – 9 c)– x 2 + 25 d) x2 - 2 e) 4x2 + 5 f) –x 2 – 16 g) - 4x4 – 25 Dạng 5: a) 2x2 – 5x + 3 b) 4x2 + 6x – 1 c) 2x2 + x – 1 d) 3x2 + 2x – 1
Bài 7. Tìm x,biết:
a) x-3x2=0 e) 5x(3x-1)+x(3x-1)-2(3x-1)=0
b) (x+3)2-x(x-2)=13 c) (x-4)2-36=0
d) x2-7x+12=0 g) x2-2018x-2019=0
Bài 8. Tìm x, biết
a) (2x-1)2=(x+5)2 b) x2-x+1/4
c) 4x4-101x2+25=0 d) x3-3x2+9x-91=0
Bài 3: Phân tích các đa thức sau thành nhân tử:
a) x2 + 10x + 25. b) 8x - 16 - x2
c) x3 + 3x2 + 3x + 1 d) (x + y)2 - 9x2
e) (x + 5)2 – (2x -1)2
Bài 4: Tìm x biết
a) x2 – 9 = 0 b) (x – 4)2 – 36 = 0
c) x2 – 10x = -25 d) x2 + 5x + 6 = 0
Bài 3
a) x² + 10x + 25
= x² + 2.x.5 + 5²
= (x + 5)²
b) 8x - 16 - x²
= -(x² - 8x + 16)
= -(x² - 2.x.4 + 4²)
= -(x - 4)²
c) x³ + 3x² + 3x + 1
= x³ + 3.x².1 + 3.x.1² + 1³
= (x + 1)³
d) (x + y)² - 9x²
= (x + y)² - (3x)²
= (x + y - 3x)(x + y + 3x)
= (y - 2x)(4x + y)
e) (x + 5)² - (2x - 1)²
= (x + 5 - 2x + 1)(x + 5 + 2x - 1)
= (6 - x)(3x + 4)
Bài 4
a) x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
b) (x - 4)² - 36 = 0
(x - 4 - 6)(x - 4 + 6) = 0
(x - 10)(x + 2) = 0
x - 10 = 0 hoặc x + 2 = 0
*) x - 10 = 0
x = 10
*) x + 2 = 0
x = -2
Vậy x = -2; x = 10
c) x² - 10x = -25
x² - 10x + 25 = 0
(x - 5)² = 0
x - 5 = 0
x = 5
d) x² + 5x + 6 = 0
x² + 2x + 3x + 6 = 0
(x² + 2x) + (3x + 6) = 0
x(x + 2) + 3(x + 2) = 0
(x + 2)(x + 3) = 0
x + 2 = 0 hoặc x + 3 = 0
*) x + 2 = 0
x = -2
*) x + 3 = 0
x = -3
Vậy x = -3; x = -2