I :
1; no/there/for/cure/is/common/the/cold
Thực hiện phép tính:
1/1-x + 1/1+x + 2/1+x^2 + 4/1+x^4 + 8/1+x^8 + 16/1+x^16
\(\dfrac{1}{1-x}\)+\(\dfrac{1}{1+x}\)+\(\dfrac{2}{1+x^2}\)+\(\dfrac{4}{1+x^4}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
=
=\(\dfrac{4}{1-x^4}\)+\(\dfrac{4}{1+x^4}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
=\(\dfrac{8}{1-x^8}\)+\(\dfrac{8}{1+x^8}\)+\(\dfrac{16}{1+x^{16}}\)
=\(\dfrac{16}{1-x^{16}}\)+\(\dfrac{16}{1+x^{16}}\)
=\(\dfrac{32}{1-x^{32}}\)
Cho hình lập phương ABCD.A_1B_1C_1D_1ABCD.A1B1C1D1 có độ dài cạnh 8cm. Tính độ dài đường chéo DC1 của mặt DCC1D1.
Bài 60: Tìm x; biết
a/ I x+1 I + I x + 2 I + ..... + I x + 100 I = 101x
b/ I x+ 1/1.2 I + I x + 1/2.3 I + ..... + I x + 1/99.100 I = 100x
c/I I 2x-1 I-1/2 I = 3/2
d/I I 3/2x - 2 I -5/2 I = 3/4
e/I x2 + 2018 I 2019x -1 I I = x2 + 2018
f/ I (x + 1/2 ) I 2x - 3/4 II = 2x -3/4
I 2x - 1 I = 2015
I2015 - x I = -1
I 5 + 3x I = I x - 1 I
I x -1 I > 5
I x - 1 I <5
a) Ta có I 2x - 1 I = 2015
=> 2x-1=2015 hoặc 2x-1=2015
+,Th1: 2x-1=2015
2x=2015+1
2x=2016
x=2016:2
x=1008
+,Th2: 2x-1=-2015
2x=-2015+1
2x=-2014
x=-2014:2
x=-1007
Vậy x=1008, x=-1007
|x-1|<5
th1: x-1<5=> x<6
th2: x-1<-5=> x<-4
vậy x <6 hoặc<-4
|x-1|>5 cũng tương tự như thế
còn mấy câu khác Nguyễn Diệu Thảo làm thế chắc bạn cũng biết cách làm rồi
L_I_K_E CHO MÌNH NHA!!!
HÃY CHO BIẾT KẾT QUẢ IN RA MÀN HÌNH
a, i=-1; j=20;
for k:=1 to 5 do i:=i+1;
j:=j+i;
write(i, ' ',j);
b, i:=1;j:=20
for k:=1 o 5 do
begin
i:=i+1; j:=j+i;
end.
writeln(i, ' ',j);
c, i:=1;j:=20;
fork:=1 to 5 do
ì k mod 2=0 then i:=i+1;
j:=j+i;
writeln(i,' ',j);
a) Chương trình bị lỗi
b) Chương trình bị lỗi
c) Chương trình bị lỗi luôn
I 7+5x I = 1-4x
I 4x^2 - 2x I + 1 = 2x
I x^2 - 5x + 4 I = x+4
I 4 - 3x I = 3x -4
I 1+5x I = 1 + 5x
I x^2 - 3x + 1 I = 2x-3
I x-1 I = x^2 -x
|7 + 5x| = 1 - 4x
=> \(\orbr{\begin{cases}7+5x=1-4x\left(đk:x\le\frac{1}{4}\right)\\7+5x=4x-1\left(đk:x\ge\frac{1}{4}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}7-1=-4x-5x\\7+1=4x-5x\end{cases}}\)
=> \(\orbr{\begin{cases}6=-9x\\8=-x\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{2}{3}\left(tm\right)\\x=-8\left(ktm\right)\end{cases}}\)
|4x2 - 2x| + 1 = 2x
=> |4x2 - 2x| = 2x - 1
=> \(\orbr{\begin{cases}4x^2-2x=2x-1\left(đk:x\ge\frac{1}{2}\right)\\4x^2-2x=1-2x\left(đk:x\le\frac{1}{2}\right)\end{cases}}\)
=> \(\orbr{\begin{cases}4x^2-2x-2x+1=0\\4x^2-2x-1+2x=0\end{cases}}\)
=> \(\orbr{\begin{cases}\left(2x-1\right)^2=0\\4x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}2x-1=0\\x^2=\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\pm\frac{1}{2}\end{cases}}\)(tm)
Vậy ...
T:=0
for i:=1 to 100 do T:=T+1/i;
writeln(T)
T:=0;i:=1
write i<=100 do begin T:=T+1/i; i:=i+1 end;
writeln(T)
1) Tính nhanh:
P=\(1\frac{1}{3}\cdot1\frac{1}{8}\cdot1\frac{1}{15}\cdot1\frac{1}{24}\cdot1\frac{1}{35}\cdot1\frac{1}{48}\cdot1\frac{1}{63}\cdot1\frac{1}{80}\)
2) So sánh:
A=\(\frac{100^{10}+1}{100^{10}-1}\) và B=\(\frac{100^{10}-1}{100^{10}-3}\)
3) So sánh A và B biết:
A=\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)
B=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
#It's the moment when you're in good mood, you accidentally click back =.=
1) Calculate
\(P=1\frac{1}{3}.1\frac{1}{8}.1\frac{1}{15}....1\frac{1}{63}.1\frac{1}{80}\)
\(=\frac{4}{3}.\frac{9}{8}.\frac{16}{15}....\frac{64}{63}.\frac{81}{80}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}....\frac{8.8}{7.9}.\frac{9.9}{8.10}\)
\(=\frac{2.9}{10}=\frac{9}{5}\)
ta có: 10010 + 1 > 10010 - 1
⇒ A = \(\frac{100^{10}+1}{100^{10}-1}< \frac{100^{10}+1-2}{100^{10}-1-2}=\frac{100^{10}-1}{100^{10}-3}=B\)
vậy A < B
3)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{50-49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{49}{50}\)
\(=\frac{49}{50}\)
⇒ A < 1 (1)
\(B=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
\(\Rightarrow B>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)=\frac{1}{10}+\frac{90}{100}=1\)
⇒ B > 1 (2)
từ (1) và (2) ⇒ A<1<B
vậy A < B
tìm x
a, I 2x + 1 I = 7
b, 3 I x + 1 I + 1 = 28
c, I 7x - 1 I + 8 = 7
d, I 2x + 1 I = I x - 1 I
cần gấp lắm nha mn, tick 3 ngày
a) |2x +1| = 7
Th1: 2x + 1 = 7
<=> x = 3
Th2: 2x + 1 = -7
<=> x = -4
Tìm giá trị nhỏ nhất:
1. A= I 2x- 1 I + 8
2. B= I x-3 I + I x-9 I -1
Tìm giá trị lớn nhất:
1. M= -1/2 * I 2x + 3 I + 6
2. N= 3/ I 2n -1 I + 6
\(1)\) Ta có :
\(\left|2x-1\right|\ge0\)
\(\Leftrightarrow\)\(A=\left|2x-1\right|+8\ge8\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left|2x-1\right|=0\)
\(\Leftrightarrow\)\(2x-1=0\)
\(\Leftrightarrow\)\(2x=1\)
\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Vậy GTNN của \(A\) là \(8\) khi \(x=\frac{1}{2}\)
Chúc bạn học tốt ~
\(2)\) Ta có :
\(B=\left|x-3\right|+\left|x-9\right|-1\)
\(B=\left|x-3\right|+\left|9-x\right|-1\ge\left|x-3+9-x\right|-1=\left|6\right|-1=6-1=5\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-3\right)\left(9-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x-3\ge0\\9-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le9\end{cases}\Leftrightarrow}3\le x\le9}\)
Trường hợp 2 :
\(\hept{\begin{cases}x-3\le0\\9-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le3\\x\ge9\end{cases}}}\) ( loại )
Vậy GTNN của \(B\) là \(5\) khi \(3\le x\le9\)
Chúc bạn học tốt ~
\(B=\left|x-3\right|+\left|x-9\right|-1\)
\(\Rightarrow B=\left|x-3\right|+\left|9-x\right|-1\)
Ta có: \(\orbr{\begin{cases}\left|x-3\right|\ge x-3\forall x\\\left|9-x\right|\ge9-x\forall x\end{cases}}\)
\(\Rightarrow\left|x-3\right|+\left|9-x\right|-1\ge x-3+9-x-1=5\)
\(B=5\Leftrightarrow\orbr{\begin{cases}\left|x-3\right|=x-3\\\left|9-x\right|=9-x\end{cases}\Leftrightarrow\orbr{\begin{cases}x-3\ge0\\9-x\ge0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x\ge3\\x\le9\end{cases}\Leftrightarrow}3\le x\le9}\)
KL:......................