Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.
a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.
b)Chứng minh tam giác AEF đồng dạng với tam giác DBF.
Cho tam giác ABC có ba góc nhọn.Các đường cao lần lượt là AD,BE,CF cắt nhau tại H.
a,Chứng minh tam giác AEF đồng dạng với tam giác ABC
b, Chứng minh tam giác AEF đồng dạng với tam giác DBF.
LM CÂU B HỘ TỚ VỚI,TỚ ĐG CẦN GẤP Ạ!!
a,Xét \(\Delta ABE\)và \(\Delta ACF\)có:
\(\widehat{A}\)Chung
\(\widehat{E}=\widehat{F}=90^0\)
\(\Rightarrow\Delta ABE~\Delta ACF\left(g.g\right)\)
\(\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\)
Xét \(\Delta AEF\)và \(\Delta ABC\)có
\(\widehat{A}\)Chung
\(\frac{AE}{AF}=\frac{AB}{AC}\left(cmt\right)\)
\(\Rightarrow\Delta AEF~ABC\left(g.g\right)\)
b, Tương tự ta có :
ΔDBF ∼ ΔABC ( c.g.c )
Do đó : ΔAEF ∼ ΔDBF
(sai thôi nhé ^^)
Chúc bạn học tốt !
Cho tam giác nhọn ABC, ba đường cao AD, BE và CF cắt nhau tại H. a) Chứng minh tam giác AEB đồng dạng với tam giác AFC. b) Chứng minh tam giác AEF đồng dạng với tam giác ABC. c) Chứng minh BH.BE + CH.CF = BC2
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
\(\widehat{EAF}\) chung
DO đó: ΔAEF\(\sim\)ΔABC
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H
a. chứng minh tam giác AEB đồng dạng với tam giác AFC
b. chứng minh góc AEF bằng góc ABC
c. cho AE= 3cm; AB= 6cm. Chứng minh diện tích tam giác ABC = diện tích tam giác AEF
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{FAC}\) chung
Do đó: ΔAEB∼ΔAFC(g-g)
b) Ta có: ΔAEB∼ΔAFC(cmt)
nên \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{BAC}\) chung
Do đó: ΔAEF∼ΔABC(c-g-c)
Cho tam giác ABC có đường cao AD, BE, CF cắt nhau tại H.
a, Chứng minh: tam giác ABE đồng dạng với tam giác ACF.
b, Chứng minh: tam giác AEF đồng dạng với tam giác ABC.
c, Chứng minh: tam giác BDF đồng dạng với tam giác BAC.
d, Chứng minh: FC là phân giác của góc DFE.
e, Gọi giao điểm của AD và EF là M, diao điểm của BE và FD là N, giao điểm của CF và ED là P. Chứng minh: FM.DN.BE= ME.NF.PD.
Cho tam giác ABC nhọn các đường cao AD,BE,CF cắt nhau tại H,EF cắt nhau tại I,ED cắt nhau tại K chứng minh rằng:
a, AE x AC= AF x AB
b,tam giác AEF đồng dạng với tam giác ABC
c, tam giác AEF đồng dạng với tam giác DEC
d, IF x IE=IB x IC
e,góc EFC=góc EAH
f, EH là phân giác của góc DEF
g,tam giác CHA đồng dạng với tam giác CEF
h, BF x BA + CE x CA =BC2
I, HF x CK = HK x CF
K, cách đều các cạnh của tam giác DEF
l, gọi O là trung điểm của BC . cm: góc DEF= góc EOF
m, trên các đường cao BE và CF lần lượt lấy M và N sao cho góc ANB = góc AMC = 90 độ .cm:AN = AM
Em viết đề sai lung tung. Em viết chính xác lại nhé
Cho tam giác ABC có ba đường cao AD, BE và CF cắt nhau tại H. a, Chứng minh: AExAC = AF×AB b, Chứng minh: tam giác AEF đồng dạng với tam giác ABC ;tam giác BFD đồng dạng với tam giác BCA c, Chứng minh tam giác CFD đồng dạng tam giác CBH
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
góc A chung
=>ΔABE đồng dạng với ΔACF
=>AB/AC=AE/AF
=>AB*AF=AE*AC: AB/AE=AC/AF
b: Xet ΔABC và ΔAEF có
AB/AE=AC/AF
góc BAC chung
=>ΔABC đồng dạng với ΔAEF
góc BFC=góc BDA=90 độ
mà góc B chung
nên ΔBFC đồng dạng với ΔBDA
=>BF/BD=BC/BA
=>BF/BC=BD/BA
=>ΔBFD đồng dạng với ΔBCA
Giúp mình bài này với ạ !
Cho tam giác nhọn ABC ( AB < AC ) . Ba đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại I.
a) Chứng minh tam giác ABE và tam giác ACF đồng dạng , tam giác AEF và tam giác ABC đồng dạng.
b) Vẽ FK vuông góc với BC tại K. Chứng minh AC. AE = AH. AD và CH. DK = CD . HF
c) Chứng minh \(\dfrac{EI}{ED}=\dfrac{HI}{HD}\)
d) Gọi M và N lần lượt là trung điểm của đoạn AF và đoạn CD.Chứng minh góc BME = góc BNE = 180 độ.
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh tam giác AEB đồng dạng tam giác AFC
b) Chứng minh tam giác AEF đồng dạng tam giác ABC
c) Cho thêm điều kiện 4AD.HD= BC2. Chứng minh tam giác ABC là tam giác cân
a: Xet ΔAEB và ΔAFC có
góc AEB=góc AFC
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC co
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
cho tam giác abc có 3 góc nhọn 3 đường cao ad,be,cf cắt nhau tại h
a)chứng minh tam giác AHF đồng dạng với tam giác ABD
tam giác ACF đồng dạng vói tam giác ABE
b) AF.AB=AE.AC
c)tam giác AEF đồng dạng với tam giác ABC
d) cho BD=2cm:CD=3cm SABC=30cm^2
tính S HBC=?
giúp mik câu d với ạ!!!!!!!!!!!
bn có đáp án chx ạ
có r thì cho mik xin đáp án đk
1 . Cho tam giác ABC có góc A =90o,AB =80 cm,AC=60 cm,AH là đường cao, AI là phân giác(H và I thuộc BC)
a.Tính BC,AH,BI,CI
b.Chứng minh tam giác ABC và tam giác HAC đồng dạng
c.HM và HN là phân giác của tam giác ABH và tam giác ACH. Chứng monh tam giác MAH và tam giác NCH đồng dạng.
d.Chứng minh tam giác ABC và tam giác HMN đồng dạng rồi chứng minh tam giác MAN vuông cân
e.Phân giác của góc ACB cắt HN ở E, phân giác của góc ABC cắt HM ở F. Chứng minh EF song song với MN
f.Chứng minh:BF.EC=AF. AE
2 ,
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD , BE, CF cắt nhau tại H.
a)Chứng minh tam giác AEF đồng dạng với tam giác ABC.
b)Chứng minh tam giác AEF đồng dạng với tam giác DBF.
3 .
Cho tam giác ABC vuông tại A , AB=9cm; AC=12cm. đường cao AH, đường phân giác BD.Kẻ DE vuông góc với BC(E thuộc BC), đường thẳng DE cắt đường thẳng AB tại F.
a.Tính BC, AH?
b.Chứng minh tam giác EBF đồng dạng với tam giác EDC
c.Gọi I là giao điểm của AH và BD.Chứng minh.AB.BI=BH.BD
d.Chứng minh BD vuông góc với CF
e.Tính tỉ số diện tích của 2 tam giác ABC và BCD
giải phương trình : x^2 - 2x -3=-4