+ ΔABE ∼ ΔACF ( g.g )
\(\Rightarrow\frac{AB}{AE}=\frac{AC}{AF}\Rightarrow\frac{AB}{AC}=\frac{AE}{AF}\)
+ ΔAEF ∼ ΔABC ( c.g.c )
+ Tương tự ta có :
ΔDBF ∼ ΔABC ( c.g.c )
Do đó : ΔAEF ∼ ΔDBF
+ ΔABE ∼ ΔACF ( g.g )
\(\Rightarrow\frac{AB}{AE}=\frac{AC}{AF}\Rightarrow\frac{AB}{AC}=\frac{AE}{AF}\)
+ ΔAEF ∼ ΔABC ( c.g.c )
+ Tương tự ta có :
ΔDBF ∼ ΔABC ( c.g.c )
Do đó : ΔAEF ∼ ΔDBF
cho tam giác abc có 3 góc nhọn 3 đường cao ad,be,cf cắt nhau tại h
a)chứng minh tam giác AHF đồng dạng với tam giác ABD
tam giác ACF đồng dạng vói tam giác ABE
b) AF.AB=AE.AC
c)tam giác AEF đồng dạng với tam giác ABC
d) cho BD=2cm:CD=3cm SABC=30cm^2
tính S HBC=?
giúp mik câu d với ạ!!!!!!!!!!!
Cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh DAEB ∽ DAFC.
b) Chứng minh tam giác AEF ∽ tam giác ABC.
c) Tia AH cắt BC tại D. Chứng minh FC là tia phân giác của góc DFE.
d) Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM. Chứng minh SAHM = 4SIOM.
Làm giúp mình câu c,d với!!!
Cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) Chứng minh tam giác AEB ∽ tam giác AFC.
b) Chứng minh tam giác AEF ∽tam giác ABC.
c) Tia AH cắt BC tại D. Chứng minh FC là tia phân giác của góc DFE.
d) Đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM. Chứng minh SAHM = 4SIOM.
Cho tam giác ABC nhọn có ba đường cao AD, BE và CF cắt nhau tại H
a) Chứng minh rằng: tam giác ABE đồng dạng tam giác ACF và AE.AC = AF.AB
b) Chứng minh rằng: BH.BE = BD.BC
c) Gọi N là giao điểm của EF và AD. Chứng minh rằng FC là tia phân giác của góc DEF, rồi suy ra: NH.AD = AN.HD.
mọi người giúp em giải câu c thôi ạ
Cho tam giác ABC nhọn có các đường cao BE,CF cắt nhau tại H (E thuộc AC, F thuộc AB)
a) chứng minh tam giác AEB đồng dạng tam giác AFC
b) chứng minh tam giác AEF đồng dạng tam giác ABC
c) đường thẳng AH cắt BC tại D. Tính tổng HD/AD+HE/BE+HF/CF
Bài 3:Cho tam giác ABC cân ở A, có AB=AC=100cm, BC=120 cm hai đường cao AD, BE cắt nhau ở H
a)Tìm các tam giác đồng dạng với tam giác BDH
b)Tính độ dài các đoạn HD, AH, BH, HE
Bài 5:Cho tam giác ABC vuông tại A đường cao AH
a)Chứng minh rằng AB2 =BH.BC và AC2 =CH.CB
b)Tính chu vi tam giác ABC, nếu BH= 9cm, HC= 16 cm
cho tam giác ABC nhọn , 2 đường cao BE , CF cắt nhau tại H , E thuộc AC , F thuộc AB , AH cắt BC tại D
a) chứng minh AD vuông góc với DC
b) chứng minh : HA.HD=HE.HB=HF.HC
c) chứng minh tam giác AEF đồng dạng tam giác ABC.
Cho 2 điểm B,C cố định và điểm A di động sao cho tam giác ABC có 3 góc nhọn, đường cao AD,BE,CF giao nhau tại H, AH giao EF tại K
a) CM: Tam giác EHC đồng dạng với Tam giác FHB
b) Góc EFC= góc EBC
c) Góc BFD=góc ACB
d) CM: AD.HK=AK.HD
e) TÌm điều kiện để AD.HD đạt giá trị lớn nhất
Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H
1. Chứng minh tam giác ABE và tam giác ACF đồng dạng
Xét \(\Delta ABE\) và \(\Delta ACF\) :
\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)
2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)
Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)
Xét tam giác AEF và tam giác ABC:
\(\widehat{A}\) chung
\(\dfrac{AB}{AC}=\dfrac{AF}{AE}\) (cmt )
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) ( hai góc t/ứ)
3.Vẽ DM vuông gosc với AC tại M . Gọi K là giao điểm của CH và DM . Chứng minh \(\dfrac{BH}{EH}=\dfrac{DK}{MK}\) và \(AH.AD+CH.CF=\dfrac{CD^4}{CM^2}\)
Bài 2 : Cho ba số \(x,y,z\) khác 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) . Tính giá trị của biểu thức \(P=\dfrac{2017}{3}xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)