a: Xet ΔAEB và ΔAFC có
góc AEB=góc AFC
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC co
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
a: Xet ΔAEB và ΔAFC có
góc AEB=góc AFC
góc A chung
=>ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC co
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng với ΔABC
cho tam giác ABC nhọn,các đường cao AD,BE,CF cắt nhau tại Ha.Chứng minh:tam giác AEB đồng dạng tam giác AFCb.Chứng minh:tam giác AEF đồng dạng tam giác ABCc.cho thêm điều kiện 4AD.HD=BC.CHứng minh tam giác ABC cân
Cho tam giác nhọn ABC, ba đường cao AD, BE và CF cắt nhau tại H. a) Chứng minh tam giác AEB đồng dạng với tam giác AFC. b) Chứng minh tam giác AEF đồng dạng với tam giác ABC. c) Chứng minh BH.BE + CH.CF = BC2
Cho tam giác ABC nhọn ( AB < AC ) có ba đường cao AD , BE , CF cắt nhau tại H.
a ) Chứng minh : tam giac AEB đồng dạng tam giac AFC
b ) Chứng minh : AF.AB = AE.AC và tam giac AEF đồng dạng với tam giac ABC
c ) Gọi K là giao điểm của AH và EF . Chứng minh : KH.AD = AK.HD
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H
a. chứng minh tam giác AEB đồng dạng với tam giác AFC
b. chứng minh góc AEF bằng góc ABC
c. cho AE= 3cm; AB= 6cm. Chứng minh diện tích tam giác ABC = diện tích tam giác AEF
Cho tam giác ABC nhọn các đường cao AD,BE,CF cắt nhau tại H,EF cắt nhau tại I,ED cắt nhau tại K chứng minh rằng:
a, AE x AC= AF x AB
b,tam giác AEF đồng dạng với tam giác ABC
c, tam giác AEF đồng dạng với tam giác DEC
d, IF x IE=IB x IC
e,góc EFC=góc EAH
f, EH là phân giác của góc DEF
g,tam giác CHA đồng dạng với tam giác CEF
h, BF x BA + CE x CA =BC2
I, HF x CK = HK x CF
K, cách đều các cạnh của tam giác DEF
l, gọi O là trung điểm của BC . cm: góc DEF= góc EOF
m, trên các đường cao BE và CF lần lượt lấy M và N sao cho góc ANB = góc AMC = 90 độ .cm:AN = AM
Cho tam giác abc nhọn có 3 đường cao AD BE CF cắt nhau tại H a) chứng minh tam giác AEB đồng dạng tam giác AFc b) tam giác AEI đồng dạng tam giác ABC
Cho tam giác ABC có đường cao AD, BE, CF cắt nhau tại H.
a, Chứng minh: tam giác ABE đồng dạng với tam giác ACF.
b, Chứng minh: tam giác AEF đồng dạng với tam giác ABC.
c, Chứng minh: tam giác BDF đồng dạng với tam giác BAC.
d, Chứng minh: FC là phân giác của góc DFE.
e, Gọi giao điểm của AD và EF là M, diao điểm của BE và FD là N, giao điểm của CF và ED là P. Chứng minh: FM.DN.BE= ME.NF.PD.
Cho tam giác nhọn ABC, các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh AEB đồng dạng với từ đó suy ra AF.AB=AE.ACb)Chứng minh. 4EF = ABCc) Cho AE = 3cmA = 6cm. Chứng minh rằng S ABC = 4S AEFCho tam giác ABC có ba đường cao AD, BE và CF cắt nhau tại H. a, Chứng minh: AExAC = AF×AB b, Chứng minh: tam giác AEF đồng dạng với tam giác ABC ;tam giác BFD đồng dạng với tam giác BCA c, Chứng minh tam giác CFD đồng dạng tam giác CBH