a: Xét ΔAEBvuông tại E và ΔAFC vuông tại F co
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
b: ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC
a: Xét ΔAEBvuông tại E và ΔAFC vuông tại F co
góc EAB chung
=>ΔAEB đồng dạng với ΔAFC
b: ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE/AB=AF/AC
=>ΔAEF đồng dạng với ΔABC
Cho tam giác nhọn ABC, ba đường cao AD, BE và CF cắt nhau tại H. a) Chứng minh tam giác AEB đồng dạng với tam giác AFC. b) Chứng minh tam giác AEF đồng dạng với tam giác ABC. c) Chứng minh BH.BE + CH.CF = BC2
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H
a. chứng minh tam giác AEB đồng dạng với tam giác AFC
b. chứng minh góc AEF bằng góc ABC
c. cho AE= 3cm; AB= 6cm. Chứng minh diện tích tam giác ABC = diện tích tam giác AEF
Cho tam giác nhọn ABC có ba đường cao AD, BE, CFcắt nhau tại H. CMR
a, tam giác AEB đồng dạng tam giác AFC
b, tam giác ABC đồng dạng tam giác AEF
c, HD/AD + HE/BE + HF/CF =1
Giúp mk vs !
Cho tam giác ABC nhọn, các đường cao AD, BE, CF cắt nhau tại H
a) Chứng minh tam giác AEB đồng dạng tam giác AFC
b) Chứng minh tam giác AEF đồng dạng tam giác ABC
c) Cho thêm điều kiện 4AD.HD= BC2. Chứng minh tam giác ABC là tam giác cân
Cho tam giác nhọn ABC các đường cao AD, BE, CF cắt nhau đang cần gấp tại H a/Chứng minh tam giác AEB đồng dạng với TAM GIAC AFC. Từ đó suy ra AF.AB = AE. AC b/Cho AE=3cm, AB=6cm. Chứng minh rằng SABc =4SAEF.
Cho tam giác ABC có 3 góc nhọn. Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: tam giác AEB đồng dạng với tam giác AFC. Tính tỉ số đồng dạng với AB=4cm, AC=6cm.
b) Chứng minh: tam giác AEF đồng dạng với tam giác ABC.
c) Kéo dài EF và BC cắt nhau tại I. Gọi M là trung điểm của BC. Chứng minh: IE.IF=IM^2-BC^2/4.
d) Gọi N là trung điểm của AH. Chứng minh: MN vuông góc với EF.
cho tam giác ABC nhọn,các đường cao AD,BE,CF cắt nhau tại Ha.Chứng minh:tam giác AEB đồng dạng tam giác AFCb.Chứng minh:tam giác AEF đồng dạng tam giác ABCc.cho thêm điều kiện 4AD.HD=BC.CHứng minh tam giác ABC cân
Cho tam giác nhọn ABC , các đường cao AD,BE,CF cắt nhau tại H a) Cm ∆ AEB và ∆ AFC đồng dạng b) Cm AE.AC = AF.AB từ đó cm ∆AEF VÀ ∆ ABC ĐỒNG DẠNG
cho tam giác ABC có 3 góc nhọn, 2 đường cao BE và CF cắt nhau tại H.
a) chứng minh tam giác AEB đồng dạng với tam giác AFC
b) chứng minh tam giác AFC đồng dạng với tam giác ABC
c) tia AH cắt BC tại D. chứng minh FC là tia phân giác góc DFE
d) đường thẳng vuông góc với AB tại B cắt đường thẳng vuông góc với AC tại C ở M. Gọi O là trung điểm của BC, I là trung điểm của AM.So sánh diện tích của 2 tam giác AFM và tam giác IOM