Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Gia Linh
Xem chi tiết
trung
1 tháng 8 2023 lúc 6:43

bạn tham khảo tại đây nhé:

Câu hỏi của Nguyễn Văn Hòa - Toán lớp 7 - Học toán với OnlineMath

Ta thấy ngay MI + MJ + MK = AH (AH là chiều cao tam giác ABC)

Nguyen Van Tung
Xem chi tiết
Nguyễn Thị BÍch Hậu
10 tháng 6 2015 lúc 21:01

A) MP vuông góc AB tại P => góc MPA=90; MQ vuông góc AC tại Q=> MQA=90

=> tg APMQ nội tiếp(tổng 2 góc đối =90)

b) diện tích tam giác AMB=1/2.MP.AB=1/2.MP.BC; diện tích tam giác AMC=1/2.MQ.AC=1/2.MP.BC( AB=BC=CA tam giác đều)

S tam giác ABC=1/2.AH.BC

ta có: S AMB+S AMC=S ABC  <=> \(\frac{1}{2}.MP.BC+\frac{1}{2}MQ.BC=\frac{1}{2}AH.BC\Leftrightarrow\frac{1}{2}BC\left(MP+MQ\right)=\frac{1}{2}.BC.AH\)

=> MP+MQ=AH

c) góc AHM=90(AH là đường cao)=> H cũng thuộc đường tròn đường kính AM <=> ngũ giác APMQH nội tiếp

(O): góc HAQ=1/2 góc HOQ(góc nt và góc ở tâm)

tam giác AHC vuông => góc HAC=90-C=90-60=30 độ hay HAQ=30(góc C=60 vì tam giác đều)

=> góc HOQ=2.30=60 . 

(O): góc PAQ=1/2 góc POQ(góc nt và góc ở tâm) <=> góc POQ=2.60=120( góc PAQ hay BAC=60- tam giác đều)

góc HOQ=60 => OH là pg của góc POQ.

tam giác POQ có: OP=OQ=R=> tam giác cân => OH đồng thời là đường cao => OH vuông góc PQ

Thanh Tùng DZ
10 tháng 6 2020 lúc 17:56

câu a , tổng hai góc đối là 180 độ nhé bạn

Khách vãng lai đã xóa
Đỗ Tuệ Lâm
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2023 lúc 21:07

a. Em tự giải

b. Do tam giác ABC đều và AH là đường cao \(\Rightarrow AH\) đồng thời là phân giác góc A

\(\Rightarrow\widehat{BAH}=\widehat{CAH}=\dfrac{1}{2}\widehat{A}=\dfrac{1}{2}.60^0=30^0\)

AEMHF nội tiếp đường tròn tâm O \(\Rightarrow\widehat{HOF}=2.\widehat{CAH}=60^0\) (góc nội tiếp và góc ở tâm cùng chắn cung HF)

Mà \(OH=OF\) (cùng là bán kính) \(\Rightarrow\Delta OHF\) đều (tam giác cân có 1 góc 60 độ)

Tương tự ta có  \(\widehat{HOE}=60^0\Rightarrow\Delta OHE\) đều

\(\Rightarrow OE=OF=HE=HF\Rightarrow OEHF\) là hình thoi

c.

Gọi D là trung điểm AH \(\Rightarrow OD\perp AH\) \(\Rightarrow OH\ge DH\Rightarrow OH\ge\dfrac{1}{2}AH\Rightarrow OH\ge\dfrac{a\sqrt{3}}{2}\)

Gọi I là giao điểm EF và OH \(\Rightarrow I\) là tâm hình thoi OEHF

\(S_{OEHF}=2S_{OHE}=2EI.OH=2\sqrt{OE^2-OI^2}.OH\)

\(=2OH.\sqrt{OH^2-\left(\dfrac{OH}{2}\right)^2}=OH^2\sqrt{3}\ge\left(\dfrac{a\sqrt{3}}{2}\right)^2.\sqrt{3}=\dfrac{3a^2\sqrt{3}}{2}\)

Dấu "=" xảy ra khi \(OH=DH\Leftrightarrow O\) trùng D

\(\Rightarrow M\) trùng H

Nguyễn Việt Lâm
21 tháng 4 2023 lúc 21:08

loading...

xin vĩnh biệt lớp 9
21 tháng 4 2023 lúc 20:36

cj cần gấp hok ? 

Nguyễn Thảo My
Xem chi tiết
trần thị linh
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Nguyễn Thị Ngân
14 tháng 5 2021 lúc 7:35
Khách vãng lai đã xóa
Phạm Đoan Trang
14 tháng 5 2021 lúc 7:53

Ta có: MP vuông góc AB (gt)

=) Góc MPA = 90độ (1)

Lại có: MQ vuông góc AC (gt)

=) Góc MQA = 90 độ (2)

Từ (1) và (2) =) góc MPA + góc MQA = 180độ

Mà 2 góc ở vị trí đối nhau

=) Tứ giác APMQ nội tiếp

Khách vãng lai đã xóa
Nguyễn Thế Hải
14 tháng 5 2021 lúc 9:53

undefined

Khách vãng lai đã xóa
Nguyễn Thu Băng
Xem chi tiết
trần thị hương
Xem chi tiết
Hào Sữa
18 tháng 9 2021 lúc 17:58

Mik ko biết 

Mai nhật ánh
Xem chi tiết
chu thi minh
Xem chi tiết