tam giác ABC có AB =3 ,AC=6,A=60.Tính bk của đường ròn ngoại tiếp của tam giác ABC
Tam giác ABC có AB =3; AC = 6 và A ^ = 60 ° . Tính bán kính R của đường tròn ngoại tiếp tam giác ABC.
A. R = 3
B. R = 3 3 .
C. R = 3 .
D. R = 6.
Áp dụng định lí Cosin, ta có B C 2 = A B 2 + A C 2 − 2 A B . A C . cos B A C ^
= 3 2 + 6 2 − 2.3.6. c o s 60 0 = 27 ⇔ B C 2 = 27 ⇔ B C 2 + A B 2 = A C 2 .
Suy ra tam giác ABC vuông tại B, do đó bán kính R = A C 2 = 3.
Chọn A.
Tam giác ABC có AB = 3; AC = 6 và góc A = 600. Tính bán kính của đường tròn ngoại tiếp tam giác ABC.
A. 2
B. 3
C. 5
D. 6
Chọn B.
Áp dụng định lí Cosin, ta có
BC2 = AB2 + AC2 - 2AB.AC.cosA
= 32 + 62-2.3.6.cos600 = 27
Ta thấy: BC2 + AB2 = AC2
Suy ra tam giác ABC vuông tại B
do đó bán kính R = AC : 2 = 3.
Cho tam giác ABC có \(AB = 6,AC = 8\) và \(\widehat A = {60^o}.\)
a) Tính diện tích tam giác ABC.
b) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích tam giác IBC.
Tham khảo:
Đặt \(a = BC,b = AC,c = AB.\)
a) Áp dụng công thức \(S = \frac{1}{2}bc\sin A\), ta có: \({S_{ABC}} = \frac{1}{2}.8.6.\sin {60^o} = \frac{1}{2}.8.6.\frac{{\sqrt 3 }}{2} = 12\sqrt 3 \)
b) Áp dụng định lí cosin cho tam giác ABC ta được:
\(\begin{array}{l}B{C^2} = {a^2} = {8^2} + {6^2} - 2.8.6.\cos {60^o} = 52\\ \Rightarrow BC = 2\sqrt {13} \end{array}\)
Xét tam giác IBC ta có:
Góc \(\widehat {BIC} = 2.\widehat {BAC} = {120^o}\)(góc ở tâm và góc nội tiếp cùng chắn một cung)
\(IB = IC = R = \frac{a}{{2\sin A}} = \frac{{2\sqrt {13} }}{{2.\frac{{\sqrt 3 }}{2}}} = \frac{{2\sqrt {39} }}{3}.\)
\( \Rightarrow {S_{IBC}} = \frac{1}{2}.\frac{{2\sqrt {39} }}{3}.\frac{{2\sqrt {39} }}{3}\sin {120^o} = \frac{{13\sqrt 3 }}{3}.\)
Cho tam giác ABC có \(AB = 6,AC = 7,BC = 8\). Tính \(\cos A,\sin A\) và bán kính R của đường trong ngoại tiếp tam giác ABC.
Áp dụng định lí cosin trong tam giác ABC ta có:
\(B{C^2} = A{C^2} + A{B^2} - 2.AC.AB.\cos A\)
\( \Rightarrow \cos A = \frac{{A{C^2} + A{B^2} - B{C^2}}}{{2.AB.AC}} = \frac{{{7^2} + {6^2} - {8^2}}}{{2.7.6}} = \frac{1}{4}\)
Lại có: \({\sin ^2}A + {\cos ^2}A = 1 \Rightarrow \sin A = \sqrt {1 - {{\cos }^2}A} \)(do \({0^o} < A \le {90^o}\))
\( \Rightarrow \sin A = \sqrt {1 - {{\left( {\frac{1}{4}} \right)}^2}} = \frac{{\sqrt {15} }}{4}\)
Áp dụng định lí sin trong tam giác ABC ta có:\(\frac{{BC}}{{\sin A}} = 2R\)
\( \Rightarrow R = \frac{{BC}}{{2.\sin A}} = \frac{8}{{2.\frac{{\sqrt {15} }}{4}}} = \frac{{16\sqrt {15} }}{{15}}.\)
Vậy \(\cos A = \frac{1}{4};\)\(\sin A = \frac{{\sqrt {15} }}{4};\)\(R = \frac{{16\sqrt {15} }}{{15}}.\)
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Tam giác ABC có AB=2, AC=4, góc BAC = 60°
a, chứng minh tam giác ABC vuông
b, Trên tia đối của AC lấy D sao cho DB=2√3. Chứng minh DB tiếp xúc với đường tròn ngoại tiếp tam giác ABC
Cho tam giác ABC vuông tại A, AB=6, BC=10, AC=8. Tính bán kính của đường tròn O' tiếp xúc với AB, AC và tiếp xúc trong với đường tròn ngoại tiếp tam giác ABC
Cho tam giác ABC có AB=3, AC=7, BC=8.
a) tính diện tích tam giác ABC.
b) Tính bán kính đường tròn nội tiếp, ngoại tiếp của tam giác.
c) Tính đường cao kẻ từ đỉnh A.
Cho tam giác ABC có AB = 10, AC = 4 và \(\widehat{A}=60^0\) . Lấy điểm D trên tia đối của tia AB sao cho AD = 6 và điểm E trên tia AC sao cho AE = x. Tìm x để BE là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE.