Cho tam giác DEF có 2 đường cao EM và FN cắt nhau tại I.
Cho tam giác DEF có 2 đường cao EM và FN cắt nhau tại I.Chứng minh rằng:4 điểm D,M,I,N cùng thuộc 1 đường tròn
Xét tứ giác DMIN có
\(\widehat{DNI}+\widehat{DMI}=180^0\)
Do đó: DMIN là tứ giác nội tiếp
hay D,M,I,N cùng thuộc một đường tròn
Cho tam giác DEF có 2 đường cao EM và FN cắt nhau tại I.Chứng minh rằng:4 điểm D,M,I,N cùng thuộc 1 đường tròn (giải bằng cách không sử dụng đến tứ giác nội tiếp)
Ta có: ΔDNI vuông tại N
nên ΔDNI nội tiếp đường tròn đường kính DI(1)
Ta có: ΔDMI vuông tại M
nên ΔDMI nội tiếp đường tròn đường kính DI(2)
Từ (1) và (2) suy ra D,M,I,N cùng thuộc 1 đường tròn
Cho tam giác DEF có 2 đường cao EM và FN cắt nhau tại I.Chứng minh rằng:
a. 4 điểm E,M,N,F cùng thuộc 1 đường tròn
b. 4 điểm D,M,I,N cùng thuộc 1 đường tròn
a: Xét tứ giác ENMF có
\(\widehat{ENF}=\widehat{EMF}\left(=90^0\right)\)
Do đó: ENMF là tứ giác nội tiếp
b: Xét tứ giác DNIM có
\(\widehat{DNI}+\widehat{DMI}=180^0\)
Do đó: DNIM là tứ giác nội tiếp
a, Xét ΔENF vuông tại N
⇒ EF là đường kính của đường tròn có tâm là trung điểm của EF
Xét ΔEMF vuông tại M
⇒ EF là đường kính của đường tròn có tâm là trung điểm của EF
⇒ M,N,E,F cùng thuộc 1 đường tròn đường kính EF
b,Tương tự
Cho tam giác DEF có 2 đường cao EM và FN cắt nhau tại I.Chứng minh rằng:
a. 4 điểm E,M,N,F cùng thuộc 1 đường tròn
b. 4 điểm D,M,I,N cùng thuộc 1 đường tròn
a: Xét tứ giác ENMF có
\(\widehat{ENF}=\widehat{EMF}=90^0\)
Do đó: ENMF là tứ giác nội tiếp
hay E,N,M,F cùng thuộc 1 đường tròn
b: Xét tứ giác DMIN có
\(\widehat{DNI}+\widehat{DMI}=180^0\)
Do đó: DMIN là tứ giác nội tiếp
hay D,M,I,N cùng thuộc 1 đường tròn
cho tam giác DEF có 2 đường trung tuyến EM,FN cắt nhau tại G biết góc MEF>góc NFE so sánh EM và FN
góc MEF>góc NFE
=>góc GEF>góc GFE
=>GF>GE
=>FN>EM
Cho tam giác DEF , hai đường cao EM và FN cắt nhau tại I.
a) Chứng minh hai tam giác DME và DNF đồng dạng
b) chứng minh IM.IE = IN.IF
Cho tam giác nhọn DEF , đường cao EM , FN cắt nhau tại I
a) CM tam giác DME \(\sim\)DNF
b)IM.IE =IN.IF
c)Cho góc EDF =45 độ . Chứng tỏ rằng :\((\dfrac{MN}{EF})^2\) =\(\dfrac{1}{2}\)
a: Xet ΔDME vuông tại M và ΔDNF vuông tại N có
góc D chung
=>ΔDME đồng dạng với ΔDNF
b: Xet ΔINE vuông tại N và ΔIMF vuông tại M có
góc NIE=góc MIF
=>ΔINE đồng dạng với ΔIMF
=>IN/IM=IE/IF
=>IN*IF=IE*IM
c: Xét ΔDMN và ΔDEF có
DM/DE=DN/DF
góc D chung
=>ΔDMN đồng dạng với ΔDEF
=>MN/EF=DM/DE=1/căn 2
=>(MN/EF)^2=1/2
Cho tam giác DEF có D ^ = 80 o các đường phân giác EM và FN cắt nhau tại S ta có:
A. E D S ^ = 40 o .
B. E D S ^ = 160 o .
C. SD = SE = SF.
D. S E = 2 3 E M .
+ Vì S là giao điểm của hai đường phân giác EM và FN của tam giác DEF
Suy ra S là giao điểm của ba đường phân giác trong tam giác DEF
Nên DS là tia phân giác của góc EDF ⇒ E D S ^ = 1 2 E D F ^ = 1 2 .80 ° = 40 °
Do đó A đúng, B sai
+ S là giao của ba đường phân giác nên S cách đều ba cạnh của tam giác DEF nên C sai
+ S E = 2 3 E M là sai vì tính chất này chỉ có khi S là trọng tâm tam giác DEF và EM là trung tuyến nên D sai.
Chọn đáp án A
Cho tam giác DEF cân tại D, các đường cao EM, FN cắt nhau tại O. Gọi I là giao điểm của DO với EF. Chứng minh IE = IF.
Chứng minh được AI là đường trung tuyến của tam giác ABC, từ đó IE = IF.