Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nhi Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 0:02

1:

a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)

Dấu = xảy ra khi x=0

b: \(B=\sqrt{x+8}-7>=-7\)

Dấu = xảy ra khi x=-8

Lê Hoàng Long
Xem chi tiết
Hòa Huỳnh
Xem chi tiết
Dr.STONE
27 tháng 1 2022 lúc 9:36

\(F=\left(x+1\right)^2+\left(2x-1\right)^2=x^2+2x+1+4x^2-4x+1=5x^2-2x+2=\left(x\sqrt{5}\right)^2-2x\sqrt{5}.\dfrac{1}{\sqrt{5}}+\dfrac{1}{5}+\dfrac{9}{5}=\left(x\sqrt{5}+\dfrac{1}{\sqrt{5}}\right)^2+\dfrac{9}{5}\ge0\)- minF=\(\dfrac{9}{5}\)\(x\sqrt{5}+\dfrac{1}{\sqrt{5}}=0\)⇔x=\(\dfrac{-1}{5}\)

Minh Hiếu
27 tháng 1 2022 lúc 8:47

\(E=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\text{≥}-36\)  ∀x (vì \(\left(x^2+5x\right)^2\text{≥}0\))

MinE=-36 ⇔ \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Dr.STONE
27 tháng 1 2022 lúc 9:21

\(G=x^4-2x^3+3x^2-4x+2005=x^4-x^3-x^3+x^2+2x^2-2x-2x+2+2003=x^3\left(x-1\right)-x^2\left(x-1\right)+2x\left(x-1\right)-2\left(x-1\right)+2003=\left(x-1\right)\left(x^3-x^2+2x-2\right)+2003=\left(x-1\right)\left[x^2\left(x-1\right)+2\left(x-1\right)\right]+2003=\left(x-1\right)^2\left(x^2+2\right)+2003\ge0\)- minG=2003 ⇔x-1=0 ⇔x=1.

Nguyễn Mai Anh
Xem chi tiết

\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)

Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 9:35

b:

\(D=-25x^2+10x-1-10\)

\(=-\left(25x^2-10x+1\right)-10\)

\(=-\left(5x-1\right)^2-10< =-10\)

Dấu = xảy ra khi x=1/5

\(E=-9x^2-6x-1+20\)

\(=-\left(9x^2+6x+1\right)+20\)

\(=-\left(3x+1\right)^2+20< =20\)

Dấu = xảy ra khi x=-1/3

\(F=-x^2+2x-1+1\)

\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)

Dấu = xảy ra khi x=1

Vũ khoa
Xem chi tiết
NCS _ NoCopyrightSounds
3 tháng 4 2016 lúc 19:53

nhân cái đầu với cái cuối, hai cái giữa nhân vào nhau rồi đặt ẩn là ra

no name
Xem chi tiết
ngonhuminh
4 tháng 1 2017 lúc 13:33

GTNN=-36 tại x=0

Nguyễn Diệu Linh
27 tháng 3 2017 lúc 21:50

-36 bạn nha

CHÚC BẠN HỌC GIỎI

vkook
30 tháng 4 2019 lúc 20:32

trả lời

GTNN = -36 tại x = 0

học tốt!!!

nguyen trung dung
Xem chi tiết
the picses boy
7 tháng 4 2016 lúc 19:21

v~ bố đây là toán lớp 7

Nguyễn Tuấn
7 tháng 4 2016 lúc 19:22

f(x)=x^2-5x+6+1=(x-2.25)^2+0.75>=0.75

Uyên Phương
7 tháng 4 2016 lúc 19:29

- Có (x+2)*(x-3)+1 = x2 - x -5 = (x-1/2)-4.75 
=> Min = -4.75 <=> x= 1/2

 

nguyen trung dung
Xem chi tiết
Nguyễn Tuấn
7 tháng 4 2016 lúc 19:15

f(x)= x^2-5x+6+1=(x^2-5x+6.25)+0.75>=0.75

min = 0.75

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 3 2018 lúc 2:17

a) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) > 0 trên khoảng (-4; 0) và f’(x) < 0 trên khoảng (0; 4).

Hàm số đạt cực đại tại x = 0 và f C Đ  = 5

Mặt khác, ta có f(-4) = f(4) = 3

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

d) f(x) = | x 2  − 3x + 2| trên đoạn [-10; 10]

Khảo sát sự biến thiên và vẽ đồ thị của hàm số g(x) = x 2  – 3x + 2.

Ta có:

g′(x) = 2x − 3; g′(x) = 0 ⇔ x = 3/2

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Giải sách bài tập Toán 12 | Giải sbt Toán 12

nên ta có đồ thị f(x) như sau:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đồ thị suy ra: min f(x) = f(1) = f(2) = 0; max = f(x) = f(−10) = 132

e) Giải sách bài tập Toán 12 | Giải sbt Toán 12

f′(x) < 0 nên và f’(x) > 0 trên (π/2; 5π/6] nên hàm số đạt cực tiểu tại x = π/2 và f C T  = f(π/2) = 1

Mặt khác, f(π/3) = 2√3, f(5π/6) = 2

Vậy min f(x) = 1; max f(x) = 2

g) f(x) = 2sinx + sin2x trên đoạn [0; 3π/2]

f′(x) = 2cosx + 2cos2x = 4cos(x/2).cos3(x/2)

f′(x) = 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: f(0) = 0,

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó ta có: min f(x) = −2 ; max f(x) = 3√3/2