\(F=\left(x+1\right)^2+\left(2x-1\right)^2=x^2+2x+1+4x^2-4x+1=5x^2-2x+2=\left(x\sqrt{5}\right)^2-2x\sqrt{5}.\dfrac{1}{\sqrt{5}}+\dfrac{1}{5}+\dfrac{9}{5}=\left(x\sqrt{5}+\dfrac{1}{\sqrt{5}}\right)^2+\dfrac{9}{5}\ge0\)- minF=\(\dfrac{9}{5}\)⇔\(x\sqrt{5}+\dfrac{1}{\sqrt{5}}=0\)⇔x=\(\dfrac{-1}{5}\)
\(E=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)
\(=\left(x^2+5x\right)^2-36\text{≥}-36\) ∀x (vì \(\left(x^2+5x\right)^2\text{≥}0\))
MinE=-36 ⇔ \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(G=x^4-2x^3+3x^2-4x+2005=x^4-x^3-x^3+x^2+2x^2-2x-2x+2+2003=x^3\left(x-1\right)-x^2\left(x-1\right)+2x\left(x-1\right)-2\left(x-1\right)+2003=\left(x-1\right)\left(x^3-x^2+2x-2\right)+2003=\left(x-1\right)\left[x^2\left(x-1\right)+2\left(x-1\right)\right]+2003=\left(x-1\right)^2\left(x^2+2\right)+2003\ge0\)- minG=2003 ⇔x-1=0 ⇔x=1.