Tìm số nguyên n biết 2n+1 là bội của n-3
Tìm x biết : (x+3) (x+17) <0
Tìm số nguyên x,y biết
A)
a) (x-1).(y+1)=-2
b) (x+1).(X.Y-1)=3
B) TÌM SỐ NGUYÊN N BIẾT
-17 LÀ BỘI CỦA N-5
a,Tìm các số nguyên x sao cho 4x+3 chia hết cho x+2
b, Tìm số nguyên x,y biết 3xy-2x-3y=5
c, Tìm các số nguyên n biết : n-2 là ước của 2n+1
d, Cho x,y là các số nguyên . Chứng tỏ rằng 6x+11y là bội của 31 khi và chỉ khi x+7y là bội của 31
( Mình đang cần rất gấp , bạn nào xong trước mình sẽ tick! )
Bài 1:Tìm x thuộc Z biết:
a)-12.(x-5)+7.(3-x)=5
b)x.(x+3)=0
Bài 2:Tìm tập hợp các số nguyên n biết:
a)2n+7 là bội của n-3
*Mình chưa học chia hai số nguyên(âm) nha
Mình cần gấp!!!!!Ai giải hộ nha.Thanks
1.Tìm các số nguyên x,biết:
a.7x.(2x+x) - 7x(x+3)=14
2.Tìm các số nguyên x thỏa mãn |2x-2| -3x+1= -2
3.Tìm số nguyên n, biết n+1 là bội của n-5
Giúp mình với , mình cần gấp!!!!!!!!!!!!!!!!!!!
a/ 7x(2x+x) - 7x(x+3) =14
7x(2x+x-x-3)=14
x(2x-3)=2
=> x=2
Trả lời :
Bạn kia trả lời đúng rồi !
Hok tốt nha !
1. Tìm x,y là số nguyên biết"
a,
\(\frac{-8}{3x-1}\)= \(\frac{4}{-7}\)
b,
\(\frac{x}{-3}\)= \(\frac{-3}{x}\)
c,
\(\frac{-4}{y}\)= \(\frac{x}{2}\)
2. Tìm cặp x,y là số nguyên biết:
a, (x-1).(y+2)=7
b, 3xy-3x-y=0
3.Tìm n là số nguyên biết:
a, 2n+8 là bội của n+1
b, (n-4) chia hết cho (n-1)
Bài 10: Tìm các số nguyên \(x\) biết:
a) \(2x-3\) là bội của \(x+1\)
b) \(x-2\) là ước của \(3x-2\)
Bài 14: Tìm số tự nhiên \(n\) sao cho:
a) \(4n-5\) ⋮ \(2n-1\)
b) \(n^2+3n+1\) ⋮ \(n+1\)
Bài 16: Tìm cặp số tự nhiên \(x\),\(y\) biết:
a) \(\left(x+5\right)\left(y-3\right)=15\)
b) \(\left(2x-1\right)\left(y+2\right)=24\)
c) \(xy+2x+3y=0\)
d) \(xy+x+y=30\)
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
Bài 16:
a: \(\left(x+5\right)\left(y-3\right)=15\)
=>\(\left(x+5\right)\left(y-3\right)=1\cdot15=15\cdot1=\left(-1\right)\cdot\left(-15\right)=\left(-15\right)\cdot\left(-1\right)=3\cdot5=5\cdot3=\left(-3\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-3\right)\)
=>\(\left(x+5;y-3\right)\in\left\{\left(1;15\right);\left(15;1\right);\left(-1;-15\right);\left(-15;-1\right);\left(3;5\right);\left(5;3\right);\left(-3;-5\right);\left(-5;-3\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(-4;18\right);\left(10;4\right);\left(-6;-12\right);\left(-20;2\right);\left(-2;8\right);\left(0;6\right);\left(-8;-2\right);\left(-10;0\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(10;4\right);\left(0;6\right)\right\}\)
b: x là số tự nhiên
=>2x-1 lẻ và 2x-1>=-1
\(\left(2x-1\right)\left(y+2\right)=24\)
mà 2x-1>=-1 và 2x-1 lẻ
nên \(\left(2x-1\right)\cdot\left(y+2\right)=\left(-1\right)\cdot\left(-24\right)=1\cdot24=3\cdot8\)
=>\(\left(2x-1;y+2\right)\in\left\{\left(-1;-24\right);\left(1;24\right);\left(3;8\right)\right\}\)
=>\(\left(2x;y\right)\in\left\{\left(0;-26\right);\left(2;22\right);\left(4;6\right)\right\}\)
=>\(\left(x;y\right)\in\left\{\left(0;-26\right);\left(1;11\right);\left(2;6\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(1;11\right);\left(2;6\right)\right\}\)
c:
x,y là các số tự nhiên
=>x+3>=3 và y+2>=2
xy+2x+3y=0
=>\(xy+2x+3y+6=6\)
=>\(x\left(y+2\right)+3\left(y+2\right)=6\)
=>\(\left(x+3\right)\left(y+2\right)=6\)
mà x+3>=3 và y+2>=2
nên \(\left(x+3\right)\cdot\left(y+2\right)=3\cdot2\)
=>x=0 và y=0
d: xy+x+y=30
=>\(xy+x+y+1=31\)
=>\(x\left(y+1\right)+\left(y+1\right)=31\)
=>\(\left(x+1\right)\left(y+1\right)=31\)
\(\Leftrightarrow\left(x+1\right)\cdot\left(y+1\right)=1\cdot31=31\cdot1=\left(-1\right)\cdot\left(-31\right)=\left(-31\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y+1\right)\in\left\{\left(1;31\right);\left(31;1\right);\left(-1;-31\right);\left(-31;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right);\left(-2;-32\right);\left(-32;-2\right)\right\}\)
mà (x,y) là cặp số tự nhiên
nên \(\left(x,y\right)\in\left\{\left(0;30\right);\left(30;0\right)\right\}\)
1. cho A = 5 phần n + 3
a, Tìm n để A là phân số
b, Tìm n thuộc Z để A làm số nguyên
2. Tìm số nguyên x biết 23 là bội của x + 1
Bài 1: \(A=\frac{5}{n+3}\)
a) Để A là phân số thì n + 3 phải khác 0
Mà (-3) + 3 = 0
\(\Rightarrow\left(-2\right)\le n\)
b) Ta có: n thuộc Z
Và để A nguyên thì 5 phải chia hết cho n + 3
Ta có: 5 chia hết cho 5
Suy ra n = 5 - 3 = 2
Bài 2: Vì 23 là bội của x + 1
=> 22 - 1 là bội của x
=> 22 là bội của x
=> x thuộc Ư(22)
Ư(22) = { 1 , 2 ,11,22 }
Vậy x = { 1 , 2 , 11 , 22 }
Bạn chỉnh sửa câu b ở bài 1 thành như sau:
b) Ta có: n thuộc Z
Và để A nguyên thì 5 phải chia hết cho n + 3
Ta có: 5 chia hết cho 5
Và 5 chia hết cho 1
Suy ra n = 5 - 3 = 2
Và n cũng bằng 1 - 3 = (-2)
1. Tìm tất cả các số nguyên a biết : 6a - 1 chia hết cho 3a - 1
2. Tìm số nguyên a,b biết : a,b > 0 và a (b - 2) = 3
3. Tìm số nguyên n biết : 2n - 1 là bội của n + 3
Tìm số nguyên n biết 2n+7 là bội của n-3
2n + 7 là bội của n - 3
<=> 2(n - 3) + 13 là bội của n - 3
<=> 13 là bội của n - 3 (vì 2(n - 3) là bội của n - 3)
<=> n - 3 ∈ Ư(13) = {1; -1; 13; -13}
Lập bảng giá trị:
n - 3 | 1 | -1 | 13 | -13 |
n | 4 | 2 | 16 | -10 |
Vậy n ∈ {4; 2; 16; -10}
ta có 2n+7 chia hết cho n-3
Suy ra 2(n-3)+13 chia hết cho n-3
Suy ra 13 chia hết cho n-3 vì 2(n-3) chia hết cho n-3
Suy ra n-3\(\in\)Ư(13)={-1;-13;1;13}
ta có bảng giá trị
n-3 | -1 | -13 | 1 | 13 |
n | 2 | -10 | 4 | 16 |
Vậy n={2;-10;4;16}