giải pt: (x+1)^3+(x-2)^3=(2x-1)^3
giải pt: x^5 + 2x^4 +3x^3 + 3x^2 + 2x +1=0
giải pt: x^4 + 3x^3 - 2x^2 +x - 3=0
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
giải pt 4(2X^2+1) +3(X^2 -2X) Căn 2X-1 =2(X^3 +5X)
\(ĐKXĐ:x\ge\frac{1}{2}\)
Phương trình đã cho tương đương :
\(4.\left(x^2+1\right)+3.x.\left(x-2\right).\sqrt{2x-1}=2x^3+10x\)
\(\Leftrightarrow3x\left(x-2\right)\sqrt{2x-1}=2x^3-8x^2+10x-4\)
\(\Leftrightarrow3x.\left(x-2\right).\sqrt{2x-1}=2.\left(x-2\right).\left(x-1\right)^2\) (1)
Dễ thấy \(x=2\) là một nghiệm của (1). Xét \(x\ne2\). Khi đó ta có :
\(3x.\sqrt{2x-1}=2.\left(x-1\right)^2\)(*)
Đặt \(\sqrt{2x-1}=a\left(a\ge0\right)\Rightarrow-a^2=1-2x\)
Khi đó pt (*) có dạng :
\(3x.a=2.\left(x^2-a^2\right)\)
\(\Leftrightarrow2x^2-3xa-2a^2=0\)
\(\Leftrightarrow2x^2-4ax+xa-2a^2=0\)
\(\Leftrightarrow2x.\left(x-2a\right)+a.\left(x-2a\right)=0\)
\(\Leftrightarrow\left(x-2a\right)\left(a+2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2a=x\\a=-2x\end{cases}}\)
+) Với \(2a=x\Rightarrow2\sqrt{2x-1}=x\left(x\ge0\right)\)
\(\Leftrightarrow x^2=4.\left(2x-1\right)\)
\(\Leftrightarrow x^2-8x+4=0\)
\(\Leftrightarrow x=4\pm2\sqrt{3}\) ( Thỏa mãn )
+) Với \(a=-2x\Rightarrow\sqrt{2x-1}=-2x\left(x\le0\right)\)
\(\Leftrightarrow4x^2=2x-1\)
\(\Leftrightarrow4x^2-2x+1=0\) ( Vô nghiệm )
Vậy phương trình đã cho có tập nghiệm \(S=\left\{4\pm2\sqrt{3},2\right\}\)
giải pt sau:a,x.(x-3)=(2-x).(x-3)
b,x-1/2+x-1/3+x-1/2016=0
c,2x/3+2x-1/6=4
d,7+2x=4.(5-x)
e,x+2/x-2-1/x=2/x.(x-2)
`(x+2)^3 + 1/3 (2x-2)^3 = 1/5 (x+2)+8`
giải pt
=>x^3+6x^2+12x+8+1/3(8x^3-24x^2+24x-8)=1/5x+2/5+8
=>x^3+6x^2+12x+8+8/3x^3-8x^2+8x-8/3=1/5x+42/5
=>11/3x^3-2x^2+20x+16/3-1/5x-42/5=0
=>11/3x^3-11/5x^2+20x-46/15=0
=>\(x\simeq0,16\)
Giải pt: 4/x^2+2x-3=2x-5/x+3-2x/x-1
ĐKXĐ: \(x\notin\left\{-3;1\right\}\)
Ta có: \(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)
\(\Leftrightarrow\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)
Suy ra: \(\left(2x-5\right)\left(x-1\right)-2x\left(x+3\right)=4\)
\(\Leftrightarrow2x^2-2x-5x+5-2x^2-6x=4\)
\(\Leftrightarrow-13x+5=4\)
\(\Leftrightarrow-13x=4-5=-1\)
hay \(x=\frac{1}{13}\)(nhận)
Vậy: \(S=\left\{\frac{1}{13}\right\}\)
\(\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{x^2-2x-3}\) giải pt
\(\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{x^2-2x-3}\)
* x2 - 2x - 3 = x2- 3x + x - 3 = x(x-3 ) + ( x - 3) = ( x - 3 ) ( x + 1 )
\(\Leftrightarrow\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\left(ĐKXĐ:x\ne\pm3;x\ne-1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)+8\left(x+3\right)=2x\left(x+3\right)\)
\(\Leftrightarrow x^2-2x+1+8x+24=2x^2+6x\)
\(\Leftrightarrow-x^2+25=0\)
\(\Leftrightarrow x^2-25=0\Leftrightarrow\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy \(S=\left\{-5;5\right\}\)
a) Giải pt: \(x+2\sqrt{7-x}=2\sqrt{x-1}+\sqrt{-x^2+8x-7}+1\)
b)Giải hệ pt \(\left\{{}\begin{matrix}xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\\3\sqrt{6-y}+3\sqrt{2x+3y-7}=2x+7\end{matrix}\right.\)
a.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)
\(\Leftrightarrow...\)
b. ĐKXĐ: ...
Biến đổi pt đầu:
\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)
\(\Rightarrow a^2b^2-b^4=b-a\)
\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)
Thế vào pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)
\(\Leftrightarrow...\)
GIẢI CÁC PT SAU:
\(\dfrac{2x+1}{3x+2}=5\)
\(\dfrac{2x^2-5x+2}{x-1}=\dfrac{2x^2+x+15}{x-3}\)
\(\dfrac{2x+3}{x-3}-\dfrac{4}{x+3}=\dfrac{24}{x^2-9}+2\)