Tính 2(x^2+2xy+y^2)^2
Thực hiện phép tính:
a/(x^2+y^2-2xy)+(x^2+y^2 +2xy)
b/(x^2+y^2-2xy) - (x^2+y^2+2xy)
a.
(x^2 + y^2 - 2xy) + (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy + x^2 + y^2 + 2xy
= (x^2 + x^2) + (y^2 + y^2) + (2xy - 2xy)
= 2x^2 + 2y^2
b.
(x^2 + y^2 - 2xy) - (x^2 + y^2 + 2xy)
= x^2 + y^2 - 2xy - x^2 - y^2 - 2xy
= (x^2 - x^2) + (y^2 - y^2) - (2xy + 2xy)
= -4xy
Tính 1 cách hợp lí x/x^2+2xy+y^2 + 2y/x+y + y/x^2+2xy+y^2=?
\(\dfrac{x}{x^2+2xy+y^2}+\dfrac{2y}{x+y}+\dfrac{y}{x^2+2xy+y^2}\)
\(=\dfrac{x+y}{\left(x+y\right)^2}+\dfrac{2y}{x+y}\)
\(=\dfrac{1}{x+y}+\dfrac{2y}{x+y}=\dfrac{2y+1}{x+y}\)
Thực hiện phép tính :
(x^2-2xy+2(y^2)).(x^2+2xy+2(y^2)
Ta có:
VT=(x2+y2)2−(2xy)2VT=(x2+y2)2−(2xy)2
=(x2+y2−2xy)(x2+y2+2xy)=(x2+y2−2xy)(x2+y2+2xy)
=(x−y)2(x+y)2=VP=(x−y)2(x+y)2=VP
⇒đpcm⇒đpcm
a) cho \(\dfrac{xy}{x^2+y^2}=\dfrac{5}{8}\) . Tính \(A=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}\)
b) cho \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) . Tính \(B=\dfrac{x^2+y^2+z^2}{\left(ã+by+cz\right)^2}\)
a: \(\dfrac{xy}{x^2+y^2}=\dfrac{5}{8}\)
=>\(\dfrac{xy}{5}=\dfrac{x^2+y^2}{8}=k\)
=>\(xy=5k;x^2+y^2=8k\)
\(A=\dfrac{8k-2\cdot5k}{8k+2\cdot5k}=\dfrac{-2}{18}=\dfrac{-1}{9}\)
b: Đặt \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=k\)
=>x=a*k; y=b*k; z=c*k
\(B=\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{a^2k^2+b^2k^2+c^2k^2}{\left(a\cdot ak+b\cdot bk+c\cdot ck\right)^2}\)
\(=\dfrac{k^2\cdot\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
cho biết xy/x^2+y^2=312018/2017.Tính C=x^2-2xy+y^2x^2+2xy+y^2
cho (x+2y)(x^2-2xy+y^2) = 0 và (x-2y)(x^2+2xy+y^2) = 16 . Tính A=(xy)^2016
kinh nhờ học nhà thầy Khánh à ?
mấy bạn biết thầy Khánh ak thầy mk đó
Thu gọn và tính giá trị của đa thức P = 3x ^ 2 * y ^ 2 - x ^ 3 - 2xy + 6y ^ 2 + 3x ^ 2 + 2xy - 6y ^ 2 * t x = - 2 ; y = - 2.
Thu gọn và tính giá trị của đa thức P = 3x ^ 2 * y ^ 2 - x ^ 3 - 2xy + 6y ^ 2 + 3x ^ 2 + 2xy - 6y ^ 2 * t x = - 2 ; y = - 2
P=3x^2y^2-x^3-2xy+6y^2+3x^2+2xy-6y^2
=3x^2y^2+3x^2-x^3
=3*(-2)^2*(-2)^2+3*(-2)^2-(-2)^3
=68
Biết \(\frac{xy}{x^2+y^2}=\frac{3}{8}\)Tính \(\frac{x^2+2xy+y^2}{x^2-2xy+y^2}\)
cho x;y là các số khác 0 sao cho 3x^2-y^2=2xy. tính P= 2xy/-6x^2+xy+y^2