Cho hàm số 2 biến f(x;y) = \(x^3\) + 17x + 36y
Tồn tại hay không sô nguyên x ; y thoả mãn f(x;y) = \(2018^{2018}\)
1. Cho hàm số y =f(x) có đạo hàm f'(x) = (x^2 -1)(x-2)^2(x-3) . Hàm số đồng biến ; nghịch biến trên khoảng nào? 2. Cho hàm số y = x^4 -2x^2 . Hàm số đồng biến ; nghịch biến trên khoảng nào?
1.
\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)
Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)
Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)
2.
\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)
Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)
Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)
Cho hàm số y=f(x) xác định trên ℝ và có đồ thị của hàm số f’(x) và các khẳng định sau:
(1). Hàm số y=f(x) đồng biến trên khoảng 1 ; + ∞
(2). Hàm số y=f(x) nghịch biến trên khoảng - ∞ ; - 2
(3). Hàm số y=f(x) nghịch biến trên khoảng - 2 ; 1 .
(4). Hàm số y = f x 2 đồng biến trên khoảng - 1 ; 0
(5). Hàm số y = f x 2 nghịch biến trên khoảng (1;2)
Số khẳng định đúng là
A. 4
B. 3
C. 2
D. 5
Cho hàm số
y = f (x) = (m - 1) x + 2m - 3
a, Với giá trị nào của m thì hàm số đồng biến? Nghịch biến?
b, Biết f (1) = 2. Tính f (2)
c, Biết f (-3) = 0 hàm số đồng biến hay nghịch biến
a, Để y = (m - 1)x + 2m - 3 là hàm số bậc nhất thì a \(\ne\) 0 \(\Leftrightarrow\) m - 1 \(\ne\) 0 \(\Leftrightarrow\) m \(\ne\) 1
y = (m - 1)x + 2m - 3 đồng biến trên R \(\Leftrightarrow\) a > 0 \(\Leftrightarrow\) m - 1 > 0 \(\Leftrightarrow\) m > 1
y = (m - 1)x + 2m - 3 nghịch biến trên R \(\Leftrightarrow\) a < 0 \(\Leftrightarrow\) m - 1 < 0 \(\Leftrightarrow\) m < 1
b, f(1) = 2
\(\Leftrightarrow\) (m - 1).1 + 2m - 3 = 2
\(\Leftrightarrow\) m - 1 + 2m - 3 = 2
\(\Leftrightarrow\) m = 2
Với m = 2 ta có:
f(2) = (2 - 1).2 + 2.2 - 3 = 3
Vậy f(2) = 3
c, f(-3) = 0
\(\Leftrightarrow\) (m - 1).0 + 2m - 3 = 0
\(\Leftrightarrow\) 2m = 3
\(\Leftrightarrow\) m = 1,5
Vì m > 1 (1,5 > 1)
\(\Rightarrow\) m - 1 > 0
hay a > 0
Vậy hàm số y = f(x) = (m - 1).x + 2m - 3 đồng biến trên R
Chúc bn học tốt!
a)
+) Hàm số đồng biến \(\Leftrightarrow m>1\)
+) Hàm số nghịch biến \(\Leftrightarrow m< 1\)
b) Ta có: \(f\left(1\right)=2\)
\(\Rightarrow m-1+2m+3=2\) \(\Leftrightarrow m=0\)
\(\Rightarrow f\left(2\right)=\left(0-1\right)\cdot2+2\cdot0-3=-5\)
c) Hàm số là hàm hằng
Cho hàm số y = f(x) có đồ thị của hàm số y = f '(x) được cho như hình bên và các mệnh đề sau:
(1). Hàm số y = f(x) đồng biến trên khoảng (-1;0)
(2). Hàm số y = f(x) nghịch biến trên khoảng (1;2)
(3). Hàm số y = f(x) đồng biến trên khoảng (3;5)
(4). Hàm số y = f(x) có hai điểm cực đại và một điểm cực tiểu.
Số mệnh đề đúng là
A. 1
B. 3
C. 4
D. 2
Đáp án D
Dựa vào hình vẽ, ta thấy rằng
+ Đồ thị hàm số f '(x) cắt Ox tại 3 điểm phân biệt x 1 - 1 ; 0 , x 2 0 ; 1 , x 3 2 ; 3
Và f '(x) đổi dấu từ - → + khi đi qua x 1 , x 3 ⇒ Hàm số có 2 điểm cực tiểu, 1 điểm cực đại
+ Hàm số y = f(x) nghịch biến trên khoảng - 1 ; x 1 đồng biến trên x 1 ; x 2 (1) sai
+ Hàm số y = f(x) nghịch biến trên khoảng x 2 ; x 3 (chứa khoảng (1;2)), đồng biến trên khoảng x 3 ; 5 (chứa khoảng (3;5)) ⇒ 2 ; 3 đúng
Vậy mệnh đề 2,3 đúng và 1, 4 sai.
Cho hàm số f(x) có bảng biến thiên như sau:
Hàm số y = ( f ( x ) ) 3 - 3 ( f ( x ) ) 2 nghịch biến trên khoảng nào dưới đây?
A. (2;3).
B. (1;2).
C. (3;4).
D. (-∞;1).
Cho hàm số y=f(x) có bảng biến thiên như sau
Hàm số y=f(x^2-2) nghịch biến trên khoảng nào dưới đây ?
A. (-2;0).
B. ( 2 ; + ∞ ) .
C. (0;2).
D. ( - ∞ ; - 2 ) .
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = x ( x - 1 ) 2 ( x - 2 ) . Tìm khoảng nghịch biến của đồ thị hàm số y = f ( x )
Cho hàm số f ( x ) có đạo hàm f ' ( x ) = ( x + 1 ) 2 ( x - 1 ) 3 ( 2 - x ) . Hàm số f ( x ) đồng biến trên khoảng nào dưới đây
Cho hàm số y=f(x) có đạo hàm f ’ ( x ) = x ( x - 1 ) 2 ( x - 2 ) . Tìm khoảng nghịch biến của đồ thị hàm số y=f(x)
A. (∞;0) và (1;2)
B. (0;1)
C. (0;2)
D. (2;+∞)
Cho hàm số y=f(x) có đồ thị đạo hàm y=f’(x) được cho như hình vẽ bên và các mệnh đề sau:
(1). Hàm số y=f(x) có duy nhất 1 điểm cực trị
(2). Hàm số y=f(x) nghịch biến trên khoảng (-2;1)
(3). Hàm số y=f(x) đồng biến trên khoảng 0 ; + ∞
(4). Hàm số g x = f x + x 2 có 2 điểm cực trị.
Số mệnh đề đúng là
A. 1
B. 3
C. 4
D. 2