Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Đứcs Minh
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 20:55

Bài 1:

Không mất tổng quát giả sử $AB< AC$

Gọi $AH$ là phân giác $\widehat{BAC}$. Theo tính chất tia phân giác:

$\frac{BH}{CH}=\frac{AB}{AC}\Rightarrow \frac{BC}{CH}=\frac{AB+AC}{AC}$

Ta có:

$\frac{HN}{HC}=\frac{BN-BH}{HC}=\frac{BN}{HC}-\frac{BH}{HC}=\frac{BC}{2HC}-\frac{BH}{HC}=\frac{AB+AC}{2AC}-\frac{AB}{AC}$

$=\frac{AC-AB}{2AC}=\frac{AC-CD}{2AC}=\frac{AD}{2AC}=\frac{AM}{AC}$

Theo định lý Talet đảo suy ra $MN\parallel AH$

Ta có đpcm.

 

Akai Haruma
30 tháng 1 2021 lúc 20:59

Hình vẽ 1:

undefined

Akai Haruma
30 tháng 1 2021 lúc 21:36

2. 

Áp dụng định lý Menelaus với tam giác $AMC$ có $B,I,E$ thẳng hàng ta có:

$\frac{AE}{EC}.\frac{IM}{AI}.\frac{BC}{BM}=1$

$\Leftrightarrow \frac{AE}{EC}=\frac{AI}{2IM}$

$\Rightarrow \frac{AE}{AC}=\frac{AI}{AI+2IM}$

$\Rightarrow \frac{AC}{AE}=\frac{AI+2IM}{AI}(1)$Lại áp dụng tính chất tia phân giác và định lý Talet:

$\frac{AC}{AB}=\frac{CD}{BD}=\frac{CM+DM}{BD}=\frac{BM+DM}{BD}$

$=\frac{BM}{BD}+\frac{DM}{BD}=\frac{AM}{AI}+\frac{IM}{AI}=\frac{AM+IM}{AI}=\frac{AI+2IM}{AI}(2)$

Từ $(1);(2)\Rightarrow \frac{AC}{AB}=\frac{AC}{AE}$

$\Rightarrow AB=AE$ (đpcm)

Trần Thảo Vy
Xem chi tiết
Nguyễn Linh Chi
22 tháng 11 2019 lúc 23:31

1. Câu hỏi của 1234567890 - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa
xin chao ik
Xem chi tiết
Đinh Công Dũng
13 tháng 4 2022 lúc 10:16

undefined

Xét \(\Delta\text{A}BC\)có :

 \(ED//\text{A}C\left(gt\right)\)

\(\Rightarrow\frac{BE}{\text{A}B}=\frac{DE}{\text{A}C}\)

\(\Rightarrow\frac{BE}{ED}=\frac{\text{A}B}{\text{A}C}(1)\)

Có : AD là phân giác góc \(B\text{A}C\)

=> góc \(B\text{A}D\)=  góc \(C\text{A}D\) 

Có : \(ED//\text{A}C\left(gt\right)\)

=> góc \(\text{A}DE\)=  góc \(C\text{A}D\) 

mà  góc \(B\text{A}D\)=  góc \(C\text{A}D\) ( cmt)

=> góc \(\text{A}DE\)=  góc \(B\text{A}D\)

=> \(\Delta ED\text{A}\) cân tại E

=> \(ED=E\text{A}\)

Cộng mỗi vế của (1) với 1, ta có : 

\(1+\frac{\text{A}B}{\text{A}C}=\frac{BE}{ED}+1\)

=>\(\frac{\text{A}B}{\text{A}B}+\frac{\text{A}B}{\text{A}C}=\frac{BE}{ED}+\frac{ED}{ED}\)

mà \(ED=E\text{A}\left(cmt\right)\)

=>\(\frac{\text{A}B}{\text{A}B}+\frac{\text{A}B}{\text{A}C}=\frac{BE}{ED}+\frac{E\text{A}}{ED}\)

=>\(\frac{\text{A}B}{\text{A}B}+\frac{\text{A}B}{\text{A}C}=\frac{\text{A}B}{ED}\)

=>\(\frac{1}{\text{A}B}+\frac{1}{\text{A}C}=\frac{1}{ED}\)

mà  ​​\(ED=E\text{A}\left(cmt\right)\)

=> \(\frac{1}{\text{A}B}+\frac{1}{\text{A}C}=\frac{1}{E\text{A}}\left(đpcm\right)\)

Khách vãng lai đã xóa
Trung Nguyen
Xem chi tiết
PRINCERYM
Xem chi tiết
Know It
Xem chi tiết
Đậu Minh Phú
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 6 2023 lúc 20:11

1: góc EDA=góc BAD

=>góc EDA=góc EAD

=>ΔEAD cân tại E

2:

Xét tứ giác BKED có

BK//ED

KE//BD

=>BKED là hbh

=>BK=ED và KE=BD

Xét ΔBKD và ΔEDK có

BK=ED

KD chung

BD=EK

=>ΔBKD=ΔEDK

van Tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 7 2023 lúc 10:49

1: góc EDA=góc BAD

góc EAD=góc BAD

=>góc EDA=góc EAD

=>ΔEAD cân tại E

2: Xét tứ giác BKED có

BK//ED

KE//BD

=>BKED là hình bình hành

Xét ΔBKD và ΔEDK có

BK=ED

BD=EK

DK chung

=>ΔBKD=ΔEDK

3: BK+DE=DE+EA>AD

Nguyễn Ngọc Trâm Anh
Xem chi tiết