Cho x+y-2=0. Tính Q= \(x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
Cho x+y-2=0. Tính P= \(x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
tính giá trị của các đa thức sau biết x+y-2=0
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(N=x^3-2x^2-xy^2+2xy+2y+2x-2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
cho biết x+y-2=0
tính a,M=\(x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
b,N=\(x^3-2x^2-xy^2+2xy+2y+2x-2\)
c,P=\(x^4+2x^3y-2x^3+x^2y^2-2x^22y-x\left(x+y\right)\)\(+2x+3\)
Cho x+ y -2=0 . Tính giá tị các biểu thức sau :
1, A = \(x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
2, B = \(x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
3, C = \(x^3+x^2y-2x^2-x^2y+xy^2+2xy+2y+2x-2\)
TOÁN 7
2) Ta có:
\(B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(=x^4+x^3y-2x^3+x^3y+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[x\left(x+y\right)-2x\right]+3\)
Do \(x+y-2=0\Rightarrow x+y=2\)
\(\Rightarrow B=\left(x^4+x^3y-2x^3\right)+\left(x^3y+x^2y^2-2x^2y\right)-\left[2x-2x\right]+3\)
\(=x^3.\left(x+y-2\right)+x^2y\left(x+y-2\right)-0+3\)
\(=0+0+3\)
\(=3\)
Vậy \(B=3\)
1) Ta có:
\(A=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+y+x-1\)
\(=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+1\)
\(=0+0+0+1\)
\(=1\)
Vậy \(A=1\)
tính giá trị của các đa thức sau biết x+y-2=0
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x-1\)
\(N=x^3-2x^2-xy^2+2xy+2y+2x-2\)
\(P=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
\(M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+y+x-2+1\)
\(=1\)
\(N=x^2\left(x-2\right)-xy^2+2xy+2\left(x+y-2\right)+2\)
Ta có : \(x+y-2=0\Rightarrow x+2=-y\)
\(\Rightarrow N=-x^2y-xy^2+2xy+2\)
\(N=-xy\left(x+y-2\right)+2=2\)
\(P=x^3\left(x+y-2\right)+x^2y\left(x+y-2\right)-x\left(x+y-2\right)+3=3\)
TÍNH GIÁ TRỊ CỦA ĐA THỨC SAU BIẾT: x+y=0
\(A=2x+2y+3xy\left(x+y\right)+5\left(x^3y^2+x^2y^3\right)+2\)
\(B=3xy\left(x+y\right)+2x^3y+2x^2y^2+5\)
A=2(x+y)+3xy(x+y)+5x2y2(x+y)+2
A=2.0+3xy.0+5x2y2.0+2
A=2
B=xy(x+y)+2x2y (x+y)+5
B=xy.0+2x2y.0+5=5
a,Ta có 2(x+y)+3xy(x+y)+5x2y2(x+y)+4
Xg thay x+y=0 vào là dc bn nhó
Chúc bn hok tốt
Tính giá trị biểu thức
A=\(2x+2y+3xy\left(x+y\right)+5\left(x^3y_{ }^2+x^2y^3\right)\)
tại x+y=0
B=\(3xy\left(x+y\right)+2x^3y+2x^2y^2\)
tại x+y=0
a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)
b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)
\(\Rightarrow\)A=2(x+y)+3xy(x+y)+5x2y2(x+y)
Thay x+y=0 vào A
\(\Rightarrow\)A=0
tính giá trị của các đa thức sau; biết x+y-2=0
a)M=\(x^3+x^2y^2-2x^2-xy-y^2+3y+x-1\)
b)N=\(x^3-2x^2-xy^2+2xy+2y+2x-2\)
c)P=\(x^4+2x^3y-2x^3+x^2y^2-2x^2y-x\left(x+y\right)+2x+3\)
Tui chẳng nghĩ gì về số cúp cả
a. \(\left\{{}\begin{matrix}x^2-3x+2y=2\\2x^2+y-x=3\end{matrix}\right.\)
b.\(\left\{{}\begin{matrix}x^2+y^2+xy-3y=4\\2x-3y+xy=3\end{matrix}\right.\)
c.\(\left\{{}\begin{matrix}2x^2=y+\frac{1}{y}\\2y^2=x+\frac{1}{x}\end{matrix}\right.\)
d.\(\left\{{}\begin{matrix}x^2-2y^2-xy-2x+7y-3=0\\x^2+y^2-x+y=0\end{matrix}\right.\)