T là tổng của 2 mũ 1+2 mũ 2+..........+2 mũ 2015+2 mũ 2016.Chứng tỏ T chia hết cho 14
Cho S = 2 mũ 2020 + 2 mũ 2019+ 2 mũ 2018+ 2 mũ 2017+2 mũ 2016+2 mũ 2015 +2 mũ 2014+ 2 mũ 2013.
Chứng tỏ rằng S chia hết cho 15 ?
Ta có : S=22020+22019+22018+22017+22016+22015+22014+22013
=22013(27+26+25+24+23+22+2+1)
=22013.255
Vì 255\(⋮\)15 nên 22013.255\(⋮\)15
hay S\(⋮\)15
Vậy S\(⋮\)15.
Chứng tỏ rằng :
A) 5 mũ 2016 + 5 mũ 2015 + 5 mũ 2016 chia hết cho 31
B) 1+7+7 mũ 2 + 7 mũ 3+ .....+7 mũ 701 chia hết cho 8
C) 4 mũ 39 + 4 mũ 40+ 4 mũ 41 chia hết cho 28
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
Chứng tỏ rằng :
A) 5 mũ 2016 + 5 mũ 2015 + 5 mũ 2016 chia hết cho 31
B) 1+7+7 mũ 2 + 7 mũ 3+ .....+7 mũ 701 chia hết cho 8
C) 4 mũ 39 + 4 mũ 40+ 4 mũ 41 chia hết cho 28
Làm giúp e nhanh lên nha ! E khẩn cấp lắm ồi
b: \(B=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8\cdot\left(1+7^2+...+7^{100}\right)⋮8\)
c: \(C=4^{39}\left(1+4+4^2\right)=4^{39}\cdot21=4^{38}\cdot84⋮28\)
giúp mình câu hỏi này với các bạn ơiiiii: a= 7 mũ 2020 mũ 2019 - 3 mũ 2016 mũ 2015 trên 5 chứng tỏ a chia hết cho 2
1+2+3+...+120 và cho A= 2 mũ 2011+2 mũ 2012+ 2 mũ 2013+ 2 mũ 2014+ 2 mũ 2015.chứng tỏ A chia hết cho 31
Ta có:
M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2M=21+22+23+24+....+220⇔2.M=2.(21+22+23+24+....+220)⇔2M=2.21+2.22+2.23+2.24+....+2.220⇔2M=22+23+24+25+......+221⇒2M−M=(22+23+24+25+......+221)−(21+22+23+24+....+220)⇔M=221−21⇔M=2.220−2⇔M=2.(24)5−2⇔M=2.165−2
6x6x luôn có chữ số tận cùng là 6 nên 165165 có chữ số tận cùng là 6.
Do đó, 2.1652.165 có chữ số tận cùng là 2
Suy ra 2.165−22.165−2 có chữ số tận cùng là 0
Hay 2.165−22.165−2 chia hết cho 10.
Vậy M chia hết cho 10.
dựa vô đó nha
nếu bn cần gấp thì dựa dô đó chứ mình còn ôn bài nên ko thể giải giúp bn. Thông cảm nha
Bài 1: tìm x, biết:
a) {x-[25-(9 mũ 2 -16.5) mũ 30 .24 mũ 3]-14}=1
b) (x+1)+(x+2)+....+(x+100)=7450
Bài 2: tính tổng
S=3+6+...+2016
Bài 3: a) Chứng tỏ 7 mũ n cộng 4( số 4 là số mũ)-7 mux n chia hết cho 30, với n thuộc N
b) 3 mũ n cộng 2( 2 là số mũ) +3 mũ n chia hết cho 10 với n thuộc N
Bài 1:
a){x-[25-(92-16.5)30.243]-14}=1
=>{x-[25-1.243]-14}=1
=>x-(-13799)-14=1
=>x-(-13813)=1
=>x=1+(-13813)
=>x=-13812
b) (x+1)+(x+2)+....+(x+100)=7450
=>100x+(1+2+...+100)=7450
=>100x+5050=7450
=>x=(7450-5050):100
=>x=24
Bài 2:
S=3+6+...+2016
S=(2016-3):3+1=672 ( số số hạng)
S=(2016+3)x672:2=678384
Bài 3 dài lắm mỏi tay lắm rùi
chứng tỏ rằng:
8 mũ 5+ 2 mũ 11 chia hết cho 17
69 mũ 2 - 69.5 chia hết cho 32
8 mũ 7 - 2 mũ 19 chia hết cho 14
8 mũ 5 + 2 mũ 11 = 2 mũ 3 tất cả mũ 5 + 2 mũ 11
= 2 mũ 15 + 2 mũ 11
= 2 mũ 11(2 mũ 4 + 1)
= 2 mũ 11 * 17
Cho A = 2 mũ 0 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + 2 mũ 5 + ....+2 mũ 99 .
Chứng tỏ rằng tổng A chia hết cho 3
Sửa đề: \(A=2^0+2^1+2^2+...+2^{99}\)
\(=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\)
\(=3\left(1+2^2+...+2^{98}\right)⋮3\)