Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Kế Hướng
Xem chi tiết

loading...  loading...  

nguyen thi huyen phuong
Xem chi tiết
Vũ Quang Vinh
Xem chi tiết
Nguyễn Khánh Huyền
Xem chi tiết
NGUYỄN VĂN HỒ
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 20:38

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

Suy ra: DA=DE

Liễu Lê thị
16 tháng 12 2021 lúc 20:39

a) Vì BD là phân giác của ABC nên ABD = CBD

Xét Δ ABD và Δ EBD có:

BA = BE (gt)

ABD = EBD (cmt)

BD là cạnh chung

Do đó, Δ ABD = Δ EBD (c.g.c)

=> AD = DE (2 cạnh tương ứng) (đpcm)

b) Δ ABD = Δ EBD (câu a) => BAD = BED = 90o (2 góc tương ứng)

=> Δ DEC vuông tại E

Δ ABC vuông tại A có: ABC + C = 90o (1)

Δ CED vuông tại E có: EDC + C = 90o (2)

Từ (1) và (2) => ABC = EDC (đpcm)

c) Gọi giao điểm của AE và BD là H

Xét Δ ABH và Δ EBH có:

AB = BE (gt)

ABH = EBH (câu a)

BH là cạnh chung

Do đó, Δ ABH = Δ EBH (c.g.c)

=> BHA = BHE (2 góc tương ứng)

Mà BHA + BHE = 180o (kề bù) nên BHA = BHE = 90o

=> BH⊥AEBH⊥AE hay BD⊥AE(đpcm)

Bùi Diệu Anh
Xem chi tiết
Nguyễn Hoàng Khả Hân
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Trần Nguyễn Bảo Quyên
19 tháng 4 2017 lúc 16:30

Giải bài 63 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7

a.

Giải bài 63 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7

b. Xét ΔADE có góc ADE < góc AED (chứng minh ở phần a)

=> AE < AD (Quan hệ giữa góc - cạnh đối diện trong tam giác)

Nguyễn Thị Thảo
19 tháng 4 2017 lúc 20:34

a) So sánh ˆADCADC^ˆAECAEC^

Ta có: AC < AB

=> ˆABC<ˆACBABC^<ACB^ (1)

Vì AC = EC => ∆AEC cân tại C

=> ˆAEC<ˆCAEAEC^<CAE^

ˆACB=ˆAEC+ˆEACACB^=AEC^+EAC^ (góc ngoài tại C của ∆AEC)

=> ˆACB=2.ˆAECACB^=2.AEC^ (2)

Chứng minh tương tự : ˆABC=2ˆADCABC^=2ADC^ (3)

Từ (1), (2), (3) => 2ˆAEC=2ˆADC2AEC^=2ADC^ hay ˆAEC=ˆADCAEC^=ADC^

b) ∆AED có:

ˆAED=ˆADEAED^=ADE^ (chứng minh trên) => AD = AE



Anh Triêt
19 tháng 4 2017 lúc 21:01

Giải bài 63 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7

a)

Giải bài 63 trang 87 SGK Toán 7 Tập 2 | Giải toán lớp 7

b) Xét ΔADE có góc ADE < góc AED (chứng minh ở phần a))

=> AE < AD (Quan hệ giữa góc - cạnh đối diện trong tam giác)

Kaori Miyazono
Xem chi tiết
GV
15 tháng 11 2017 lúc 8:59

A B C 110 o D 105 o E

\(\widehat{EAC}=180^o-\widehat{BAC}=180^o-110^o=70^o\)

Tam giác ABC cân ở A nên \(\widehat{ACB}=\frac{180^o-\widehat{A}}{2}=\frac{180^o-110^o}{2}=35^o\) (1)

CE // AD => \(\widehat{ECD}+\widehat{ADC}=180^o\) (\trong cùng phía)

 => \(\widehat{ECD}=180^o-\widehat{ADC}=180^o-105^o=75^o\)  (2)

Ta lại có: \(\widehat{ACE}=\widehat{ECD}-\widehat{ACB}=75^o-35^o=40^o\)

Trong tam giác ACE có \(\widehat{EAC}=70^o;\widehat{ACE}=40^o\)

 nên góc còn lại \(\widehat{AEC}=180^o-70^o-40^o=70^o\) 

Vậy tam giác ACE cân ở C và ta có:

   \(70^o=\widehat{A}=\widehat{E}>\widehat{C}=40^o\)

   CA = CE > AE