Tìm GTNN của M = (12x2 - 16x + 43)/(x2 - 8x + 22)
Tìm GTNN của A= \(\frac{2x^2-16x+43 }{x^2-8x+22}\)
\(A=\frac{2x^2-16x+43}{x^2-8x+22}\Leftrightarrow Ax^2-8Ax+22A-2x^2+16x-43=0\)
\(\Leftrightarrow x^2\left(A-2\right)-x\left(8A-16\right)+22A-43=0\)
\(\Delta=\left[-\left(8A-16\right)\right]^2-4\left(A-2\right)\left(22A-43\right)\)
\(=-24A^2+92A-88\). \(\Delta\) có nghiệm khi \(\Delta\ge0\)
\(\Leftrightarrow-24A^2+92A-88\ge0\)\(\Leftrightarrow6A^2-23A+22\le0\)
\(\Leftrightarrow\left(A-2\right)\left(6A-11\right)\le0\)\(\Rightarrow\frac{11}{6}\le A\le2\)
Ta có \(A=\frac{2x^2-16x+43}{x^2-8x+22}\)
\(\Leftrightarrow\frac{2x^2-16x+44-1}{x^2-8x+22}=\frac{2x^2-16x+44}{x^2-8x+22}-\frac{1}{x^2-8x+22}\)
\(\Leftrightarrow\frac{2.\left(x^2-8x+22\right)}{x^2-8x+22}-\frac{1}{x^2-8x+22}=2-\frac{1}{x^2-8x+22}\)
Muốn A có gtnn thì \(\frac{1}{x^2-8x+22}\)Phải lớn nhất
Suy Ra \(x^2-8x+22\)Phải nhỏ nhất
\(\Leftrightarrow x^2-8x+22=x^2-8x+16+6=\left(x-4\right)^2+6\)
Vậy GTNN của \(x^2-8x+22\)Là 6
Suy Ra GTLN của \(\frac{1}{x^2-8x+22}\) Là \(\frac{1}{6}\)
Vậy GTNN của \(A=2-\frac{1}{6}=\frac{11}{6}\)Khi x-4=0 => x=4
tìm GTNN của biểu thức:
A= \(\frac{2x^2-16x+43}{x^2-8x+22}\)
giúp mình vs nhé?!
A = 2.(x^2-8x+22)-1/x^2-8x+22 = 2 - 1/x^2-8x+22
Có : x^2-8x+22 = (x^2-8x+16)+6 = (x-4)^2+6 >= 6 => 1/x^2-8x+22 < = 1/6
=> A = 2 - 1/x^2-8x+22 >= 2-1/6 = 11/6
Dấu "=" xảy ra <=> x-4 = 0 <=> x=4
Vậy GTNN của A = 11/6 <=> x=4
k mk nha
a, Tìm GTNN
A = ( 2x^2 - 16x + 43)/(x^2 - 8x + 22)
b, Tìm GTLN
B = (3x^2 + 9x + 17)/(3x^2 + 9x + 7)
A=[2(x^2-8x+22)-1]/(x^2-8x+22)
A=2-1/[(x-4)^2+6]
A nho nhat khi (x-4)^2=0=> x=4
min(A)=2-1/6
1 >Tim GTNN cua :
A = \(\frac{2x^2-16x+43}{x^2-8x+22}\)
Vì \(x^2-8x+22=\left(x^2-8x+16\right)+6=\left(x-4\right)^2+6>0\) nên A luôn xác định.
Từ giả thiết ta có \(A\left(x^2-8x+22\right)=2x^2-16x+43\Leftrightarrow x^2\left(A-2\right)-8x\left(A-2\right)+\left(22A-43\right)=0\)
Để tồn tại GTNN của A thì phải tồn tại giá trị của x thỏa mãn GTNN đó, tức là PT trên có nghiệm.
Xét \(\Delta'=16\left(A-2\right)^2-\left(A-2\right)\left(22A-43\right)=\left(A-2\right)\left(11-6A\right)\ge0\)
\(\Leftrightarrow\frac{11}{6}\le A\le2\)
Vậy min A = 11/6 , max A = 2 (còn giá trị của x bạn tự tìm)
Mình bổ sung cho lời giải bạn Ngọc một chút (dù gì đây là bài lớp 8),
Bạn có thể tìm trước min, max của A ngoài nháp, lúc trình bày để né Delta bạn viết như sau:
VD: minA=\(\frac{11}{6}\).
Bước 1: Làm cho mẫu có số 6. \(A=\frac{6\left(2x^2-16x+43\right)}{6\left(x^2-8x+22\right)}\).
Bước 2: Làm cho tử có số 11. \(A=\frac{11\left(x^2-8x+22\right)+x^2-8x+16}{6\left(x^2-8x+22\right)}\).
Nếu bạn làm đúng thì phần dư ra là một bình phương, quả nhiên \(x^2-8x+16=\left(x-4\right)^2\).
Vậy \(A=\frac{11}{6}+\frac{\left(x-4\right)^2}{6\left(x^2-8x+22\right)}\ge\frac{11}{6}\). Đẳng thức xảy ra tại \(x=4\).
Hình như biểu thức không có max.
Tìm giá trị nhỏ nhất của biểu thức A= 2x^2 - 16x + 43 / x^2 - 8x + 22
Tìm giá trị nhỏ nhất của biểu thức
A= \(\frac{2x^2-16x+43}{x^2-8x+22}\)
Giúp mink với !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
a) Tìm GTLN của \(N=\frac{2x^2-16x+50}{x^2-8x+22}\)
b) Tìm GTNN của \(M=\frac{3x^2-4x}{x^2+1}\)
a, N = 2 + 6/x^2-8x+22
Có : x^2-8x+22 = (x-4)^2 + 6 >= 6 => 6/x^2-8x+22 <= 6/6 = 1 => N <= 2+1=3
Dấu "=" xảy ra <=> x-4 = 0 <=> x=4
Vậy Max N =3 <=> x=4
k mk nha
Cảm ơn bạn đã giúp mink nhưng bạn làm kiểu thế mink ko hiểu. Mong bạn sửa lại !
Tìm GTNN (min y) của y = 2 1 + x 2 + 1 2 x 2 + 1
A. 2
B. 5 2
C. 3
D. 7 2
Tìm GTLN của
a) \(A=\frac{\sqrt{x}+5}{\sqrt{x}+3}\)
Tìm GTNN của
b) \(B=\frac{2x^2-16x+41}{x^2-8x+22}\)