Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phương Uyên
Xem chi tiết
Eternal friendship
15 tháng 12 2017 lúc 16:45

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

Ta có: B= 3 + 3+ 3+ ... + 31991= (3 + 3+ 35) + (37+ 3+ 311 ) + ... + (31987 + 31989 + 31991).

             = 3 x (1 + 3+ 34) + 37 x (1 + 3+ 34) + ... + 31987 x (1 + 3+ 34).

             = 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 3 x 7 x 13 + ... + 31987 x 7 x 13.

             = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).

Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.

           B= (3 + 3+ 3+ 37) +  ... + (31985 + 31987 + 31989 + 31991).

             = 3 x (1 + 3+ 3 + 36) +  ... + 31985 x (1 + 3+ 3​+ 36).

             = 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.

             = 41 x ( 3 x 20 + .. +  31985 x 20)

Vì B =41 x ( 3 x 20 + .. +  31985 x 20) nên B chia hết cho 41.

     
Ad
14 tháng 10 2018 lúc 8:47

a) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5\right)+\left(3^7+3^9+3^{11}\right)+...+\left(3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4\right)+3^7\times\left(1+3^2+3^4\right)+...+3^{1987}\times\left(1+3^2+3^4\right)\)

\(=3\times91+3^7\times91+...+3^{1987}\times91\)

\(=3\times7\times13+3^7\times7\times13+...+3^{1987}\times7\times13\)

\(=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)

Vì \(A=13\times\left(3\times7+3^7\times7+...+3^{1987}\times7\right)\)nên A chia hết cho 13.

b) Ta có: \(A=3+3^3+3^5+...+3^{1991}\)

\(=\left(3+3^3+3^5+3^7\right)+...+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)\)

\(=3\times\left(1+3^2+3^4+3^6\right)+...+3^{1985}\times\left(1+3^2+3^4+3^6\right)\)

\(=3\times820+...+3^{1985}\times820\)

\(=3\times20\times41+...+3^{1985}\times20\times41\)

\(=41\times\left(3\times20+...+3^{1985}\times20\right)\)

Vì \(A=41\times\left(3\times20+...+3^{1985}\times20\right)\)nên A chia hết cho 41.

Đỗ quyết Tiến
22 tháng 2 2024 lúc 20:01

Đcm

 

Nguyễn Thị Kim Anh
Xem chi tiết
kurosaki ichigo
3 tháng 10 2015 lúc 18:09

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

Nguyễn Trọng Phúc
12 tháng 10 2022 lúc 20:40

A={2+2^2}+{2^3+2^4}+.......+{2^59+2^60}

={2.1+2.2}+{2^3.1+2^3.2}+....+{2^59.1+2^59.2}

=2{1+2}+2^3{1+2}+...+2^59{1+2}

=2.3+2^3.3+.....+2^59.3

=3.(2+2^3+...+2^59)

vi co thua so 3 => tich do chia het cho 3

Thang Nguyen
Xem chi tiết
Trần Thị Diễm Quỳnh
22 tháng 9 2015 lúc 20:10

B=(3+32+33)+(34+35+36)+...+(358+359+360)

=3(1+3+9)+34(1+3+9)+...+358(1+3+9)

=13.3+13.34+...+13.358

=13.(3+34+...+358) luôn chia hết cho 13

vậy B chia hết cho 13

Tạ Lương Minh Hoàng
22 tháng 9 2015 lúc 20:14

B=(3+32)+(33+34)+...+(359+360)

B=3(1+3)+33(1+3)+34(1+3)+...+359(1+3)

4(4+33+34+...+359)

suy ra:4(4+33+34+...+359)chia hết cho 4

 

pham quoc bao
31 tháng 10 2017 lúc 22:06

ta có :(3^1+3^2+3^3)+(3^4+3^5)+.......+(3^58+3^59+3^60)
=(3+9+27)+3^4.(3+9+27)+.......+3^58.(3+9+27)
=39+3^4.39+.......+3^58.39
=39.(3^1+3^4+..........+3^58) chia het cho 13
(Vi 39 chia het cho 13 )
Vậy A chia hết cho 13
thanks

Nguyễn Thị Khánh Huyền
Xem chi tiết
Minh Hiền
29 tháng 10 2015 lúc 8:22

A=(1+3+32)+(33+34+35)+...+(358+359+360)

=(1+3+9)+33.(1+3+32)+...+358.(1+3+32)

=13+33.13+...+358.13

=13.(1+33+...+358) chia hết cho 13

=> A chia hết cho 13

=> đpcm.

Hà Ngọc Linh
Xem chi tiết
★Čүċℓøρş★
20 tháng 10 2019 lúc 20:07

A = 3 + 3+ ... + 359 + 360

A = 3.( 1 + 3 ) + ... + 359.( 1 + 3 )

A = ( 1 + 3 )( 3 + ... + 359 )

A = 4( 3 + ... + 359 )

Vì 4 \(⋮\)

Khách vãng lai đã xóa
Phạm Thị Thanh Huyền
20 tháng 10 2019 lúc 20:10

a) A = (  3 + 3^2) + ( 3^3 + 3^4) + ..... + ( 3^59 + 3^60)

A =  ( 3 + 3^2) + 3^2.(3 + 3^2) + ...... + 3^58. ( 3 + 3^2 )

A = 12 + 3^2.12 + .....+ 3^58.12

A = 12. ( 1 + 3^2 +....+ 3^58)

Mà 12 chia hết cho 4 => 12. ( 1 + 3^2 +...+ 3^58) chia hết cho 4 => A chia hết cho4. Câu b bạn làm tương tự nhóm 3 số vào một nhóm để ra 39 chia hết cho 13 nhé.

Khách vãng lai đã xóa
Vũ Hải Lâm
20 tháng 10 2019 lúc 20:11

a,Ta có:A=3+32+33+..+360

            =(3+32)+(33+34)+...+(359+360)

            =3(1+3)+33(1+3)+..+359(1+3)

            =(1+3)(3+33+...+359)

            =(3+33+...+359)4

\(\Rightarrow A⋮4\)

b, Bn làm tương tự nhé, nhóm 3 số vào nhé.

Khách vãng lai đã xóa
Trịnh Thị Minh Ánh
Xem chi tiết
Trần Minh Hoàng
1 tháng 10 2017 lúc 14:41

Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.

Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2

\(\Rightarrow\) ĐPCM

Đặng Phương Nhung
Xem chi tiết
Dương Lam Hàng
29 tháng 10 2017 lúc 21:06

a)Ta có: A=3+32+33+....+360

              = (3+32)+(33+34)+.....+(359+360)

              = 3.(1+3)+33.(1+3)+......+359.(1+3)

               = 4.(3+33+....+359) chia hết cho 4

b) Làm tương tự. (Nhóm 3 số)

Nguyễn Kim Ngân
Xem chi tiết
Võ Đông Anh Tuấn
4 tháng 9 2016 lúc 10:30

a ) 

B=(3+32)+(33+34)+...+(359+360)

B=3(1+3)+33(1+3)+34(1+3)+...+359(1+3)

4(4+33+34+...+359)

suy ra:4(4+33+34+...+359)chia hết cho 4

b )

B=(3+32+33)+(34+35+36)+...+(358+359+360)

=3(1+3+9)+34(1+3+9)+...+358(1+3+9)

=13.3+13.34+...+13.358

=13.(3+34+...+358) luôn chia hết cho 13

vậy B chia hết cho 13

Trần Việt Linh
4 tháng 9 2016 lúc 10:32

a) \(B=3+3^2+3^3+..+3^{60}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{59}\right)⋮4\)

=>đpcm

b) \(B=3+3^2+3^3+..+3^{60}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)=13\left(3+..+3^{58}\right)⋮13\)

=>đpcm

Nguyễn Huy Tú
4 tháng 9 2016 lúc 11:21

a) \(B=3+3^2+3^3+...+3^{60}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)

\(B=3.4+3^3.4+...+3^{59}.4\)

\(B=\left(3+3^3+...+3^{59}\right).4⋮4\left(đpcm\right)\)

b) \(B=3+3^2+3^3+...+3^{60}\)

\(B=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(B=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(B=3.13+...+3^{58}.13\)

\(B=\left(3+...+3^{58}\right).13⋮13\left(đpcm\right)\)

Leonard West
Xem chi tiết
trần việt anh
14 tháng 10 2017 lúc 18:37

cho a+b+c=0 cmr

a^3 + b^3+a^2c+b^2c-abc=0

NGUYEN NHATMINH
5 tháng 1 2018 lúc 21:47

A=2+22+23+...+260

A=(2+22+23)+...+(258+259+260)

A=12.1+...+257.(2+22+23)

A=12.1+...+257.12

A=12.(1+...+257)chia hết cho  3 vì 12 chia hết cho 3

tương tự chia lần lượt thành 4 nhóm ,5 nhóm :b)thì chia lần lượt thành 3 nhóm,4 nhóm