Tìm giá trị nhỏ nhất của C= \(x^2+2y^2-2xy-2y+2\)
1)Vvới giá trị nào của biến,đa thức B=-x2-2y2 -2xy+2y có giá trị lớn nhất. Tìm giá trị lớn nhất đó.
2)Tìm giá trị nhỏ nhất của C=x2+y2+x+y+1.
1/B=\(-\left(x^2+2y^2+2xy-2y\right)\)
=\(-\left(x^2+2xy+y^2+y^2-2y+1-1\right)\)
=\(-\left[\left(x+y\right)^2+\left(y-1\right)^2\right]+1\)<=1
Bmax=1 khi x+y=0 và y-1=0=>x=-1;y=1
2/C=\(x^2+x+\frac{1}{4}+y^2+y+\frac{1}{4}+\frac{1}{2}\)
=\(\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2+\frac{1}{2}\)>=\(\frac{1}{2}\)
Cmin=\(\frac{1}{2}\)khi \(x+\frac{1}{2}=0\)và \(y+\frac{1}{2}=0\)=>\(x=y=\frac{-1}{2}\)
Cho x , y nguyên . Tìm giá trị nhỏ nhất của biểu thức : S = \(x^2+2y^2+2x-2y+2xy+2026\)
\(S=\left(x^2+y^2+1+2xy+2x+2y\right)+\left(y^2-4y+4\right)+2021\)
\(S=\left(x+y+1\right)^2+\left(y-2\right)^2+2021\ge2021\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-3;2\right)\)
Tìm giá trị nhỏ nhất: C= x^2 + 2y^2 - 2xy + 2x - y + 2
\(A=\left(x^2+y^2+36-2xy-12x+12y\right)+5y^2-10y+5+109\)
\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+109\ge109\)
\(A_{min}=109\) khi \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)
tìm giá trị nhỏ nhất của x^2+y^2+2x+2y+2xy+5?
Tìm giá trị nhỏ nhất hoặc lớn nhất của các biểu thức sau
a) A= (x-1)(x-3)\(\left(x^2-4x+5\right)\)
b) B= \(x^2\)-2xy+\(2y^2\)-2y+1
c) C= 5+ (1-x)(x+2)(x+3)(x+6)
a: A=(x-1)(x-3)(x2-4x+5)
\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
\(=\left(x^2-4x\right)^2+8\left(x^2-4x\right)+15\)
\(=\left(x^2-4x+4\right)^2-1\)
\(=\left(x-2\right)^4-1>=-1\)
Dấu = xảy ra khi x-2=0
=>x=2
b: \(B=x^2-2xy+2y^2-2y+1\)
\(=x^2-2xy+y^2+y^2-2y+1\)
\(=\left(x-y\right)^2+\left(y-1\right)^2>=0\)
Dấu = xảy ra khi x-y=0 và y-1=0
=>x=y=1
c: \(C=5+\left(1-x\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
\(=-\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)+5\)
\(=-\left(x^2+5x-6\right)\left(x^2+5x+6\right)+5\)
\(=-\left[\left(x^2+5x\right)^2-36\right]+5\)
\(=-\left(x^2+5x\right)^2+36+5\)
\(=-\left(x^2+5x\right)^2+41< =41\)
Dấu = xảy ra khi \(x^2+5x=0\)
=>x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
Tìm giá trị nhỏ nhất của D=x^2+2y^2-2xy+4x-5y-12
E=6x^2+y^2+4xy+2y+16
ta có D=x^2 +2.y^2 -2xy+4x-5y-12
<=>D=(x^2 +y^2 +4 -2xy-4y+4x) +[y^2 -2.y.(1/2) +1/4] -1/4+8
<=>D=(x-y+2)^2 +(y-1/2)^2 +31/4
mà (x-y+2)^2 >= 0 và (y-1/2)^2>=0 nên (x-y+2)^2 +(y-1/2)^2 +31/4 >= 31/4
dấu '=' xảy ra khi :y-1/2=0 và x-y+2=0 <=> y=1/2 và x=-3/2
vậy GTNN của D là 31/4 khi x=-3/2, y=1/2
Bài 1: Tìm giá trị nhỏ nhất của:
a) F = x^2+26y^2-10xy+14x-76y+59
b) H = m^2-4mp+5p^2+10m-22p+28
Bài 2: Tìm giá trị lớn nhất của:
a) A = x^2+2y^2-2xy+2x-2y+1
b) B = x^2+2y^2-2xy+2x-10y
c) C = x^2+y^2+xy+3x-3y+2015
d) D = -5x^2-2xy-2y^2+14x+10y-1
Bài 1:
a)\(F=x^2+26y^2-10xy+14x-76y+59\)
\(=\left(x^2-2\cdot x\cdot5y+25y^2\right)+\left(14x-70y\right)+\left(y^2-6x+9\right)+50\)
\(=[\left(x-5y\right)^2+14\left(x-5y\right)+49]+\left(y-3\right)^2+1\)
\(=\left(x-5y+7\right)^2+\left(y-3\right)^2+1\ge1\)
Để Fmin=1 thì y=3;x=8
b)\(H=m^2-4mp+5p^2+10m-22p+28\)
\(=\left(m^2-2\cdot m\cdot2p+4p^2\right)+\left(10m-20p\right)+\left(p^2-2p+1\right)+27\)
\(=[\left(m-2p\right)^2+2\cdot\left(m-2p\right)\cdot5+25]+\left(p-1\right)^2+2\)
\(=\left(m-2p+5\right)^2+\left(p-1\right)^2+2\ge2\)
Để Hmin=2 thì p=1;m=-3
tìm giá trị nhỏ nhất của A = x^2+2y^2+4y+2xy-4x+2019
Do A nhỏ nhất
Suy ra : x^2 = 0, 2y^2 = 0 , 4y = 0 .......( tất cả số hạng bằng 0)
Suy ra A= 2019
\(A=x^2+2y^2+4y+2xy-4x+2019\)
\(A=\left(x^2+y^2-2^2+2xy-4y-4x\right)+\left(y^2+8y+4^2\right)+2007\)
\(A=\left(x+y-2\right)^2+\left(y+4\right)^2+2007\ge2007\)
Vậy \(Min_A=2007\) khi \(\hept{\begin{cases}x+y-2=0\\y+4=0\end{cases}}\hept{\begin{cases}x+y=2\\y=-4\end{cases}}\hept{\begin{cases}x=6\\y=4\end{cases}}\)
Tìm giá trị nhỏ nhất của x^2 + 2y^2 +2xy+2x-4y+2016