Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Quý Vượng
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 10 2021 lúc 23:59

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

Nguyên Lê
Xem chi tiết
Phong Luyến Vãn
Xem chi tiết
Khang1029
Xem chi tiết
Khang1029
Xem chi tiết
Nguyễn Văn Sơn
Xem chi tiết
Phạm Khánh Vân
22 tháng 10 2019 lúc 15:46

   1a. ( 210 + 1 )10 chia hết cho 125 = ( 1024 + 1 ) 10  chia hết cho 125 = 102510 chia hết cho 125 

Ta có : 1025 : 125 = 8.2 nên 102510 không thể chia hết cho 125 vì a chia hết cho b thì a nhân x chia hết cho b

   1b. 102018 + 53 chia hết cho 9 = ( 1 + 0 + 0 + 0 + ... ) + 125 = 1 + 8 = 9 nên 102018 + 53 chia hết cho 9

   2. x = 1 vì A =( 1 + 3 ) + ( 1 + 7 ) + ( 1 + 11 ) = 4 + 8 + 12 = 24

   Đây là đáp án mình làm thao khả năng của mk. Với lại câu 2 ko ghi rõ nên mk ko thể là chắc chắn đc  

Khách vãng lai đã xóa
Mizuki Nita
Xem chi tiết
tth_new
Xem chi tiết
nguyển văn hải
2 tháng 7 2017 lúc 20:44

a)

1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11... 
11^x-1 chia het cho 10 voi moi x 
suy ra: 11^9+11^8+...+11+1-10 chia het cho 10 
suy ra 11^9+11^8+...+11+1 chia het cho 10 
suy ra 11^10-1 chia het cho 100

Nguyễn Thị Lan Hương
2 tháng 7 2017 lúc 20:50

1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11...

11^x-1 chia het cho 10 voi moi x

suy ra: 11^9+11^8+...+11+1-10 chia het cho 10

suy ra 11^9+11^8+...+11+1 chia het cho 10

suy ra 11^10-1 chia het cho 100

Nguyễn Thị Lan Hương
2 tháng 7 2017 lúc 20:50

1^10-1=(11-1)(11^9+11^8+...+11+1)=10(11...

11^x-1 chia het cho 10 voi moi x

suy ra: 11^9+11^8+...+11+1-10 chia het cho 10

suy ra 11^9+11^8+...+11+1 chia het cho 10

suy ra 11^10-1 chia het cho 100

An Bùi
Xem chi tiết
An Bùi
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 9 2021 lúc 9:31

\(a,\left(n+10\right)\left(n+15\right)\)

Với n lẻ \(\Rightarrow n=2k+1\left(k\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2k+11\right)\left(2k+16\right)=2\left(k+8\right)\left(2k+11\right)⋮2\)

Với n chẵn \(\Rightarrow n=2q\left(q\in N\right)\)

\(\Rightarrow\left(n+10\right)\left(n+15\right)=\left(2q+10\right)\left(2q+15\right)=2\left(q+5\right)\left(2q+15\right)⋮2\)

Suy ra đpcm

\(b,\) Với n chẵn \(\Rightarrow n=2k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Với n lẻ \(\Rightarrow n=2q+1\Rightarrow n+1=2q+2=2\left(q+1\right)⋮2\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮2\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮2\)

Với \(n=3k\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+1\Rightarrow2n+1=6k+3=3\left(2k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Với \(n=3k+2\Rightarrow n+1=3\left(k+1\right)⋮3\Rightarrow n\left(n+1\right)\left(2n+1\right)⋮3\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮3\)

Suy ra đpcm