Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phong Bùi
Xem chi tiết
nguyen duc tuan
24 tháng 12 2017 lúc 14:39
ghhjkkkk
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
KCLH Kedokatoji
9 tháng 9 2020 lúc 22:00

Động não tí đi Quỳnh, a thấy bài này cũng không khó.

Khách vãng lai đã xóa
Khanh Nguyễn Ngọc
9 tháng 9 2020 lúc 22:10

Bài dễ mừ, có phải Croatia thật ko vậy :))  (viết đề bị nhầm, là x,y,z dương chứ :))

Áp dụng Cauchy-Schwarz dạng cộng mẫu số:

\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)

\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)

\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)

Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)

\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)

Dấu bằng xảy ra khi và chỉ khi x=y=z,  Xong! :))

Khách vãng lai đã xóa
Vũ Thảo Thảo
Xem chi tiết
Vũ Thảo Thảo
14 tháng 1 2019 lúc 10:07

ai biết làm giúp với

trần xuân quyến
Xem chi tiết
hoang thao my
9 tháng 6 2018 lúc 9:48

tau không biết nhà xin lỗi 

Aquarius Love
Xem chi tiết
zZz Cool Kid_new zZz
22 tháng 6 2020 lúc 10:25

Theo AM - GM và Bunhiacopski ta có được 

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)

Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)

\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)

Đặt \(t=\frac{z}{x+y}\ge1\)

Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)

\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)

Vậy ta có đpcm

Khách vãng lai đã xóa
tth_new
23 tháng 6 2020 lúc 10:32

Ta có:

\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)

Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\) 

Khách vãng lai đã xóa
Không Cần Biết
Xem chi tiết
Không Cần Biết 2
1 tháng 5 2017 lúc 7:22

Chứng minh:

Ta có:

\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2-2xy\ge0\Rightarrow x^2+y^2\ge2xy\)

\(\left(y-z\right)^2\ge0\Rightarrow y^2+z^2-2yz\ge0\Rightarrow y^2+z^2\ge2yz\)

\(\left(x-z\right)^2\ge0\Rightarrow x^2+z^2-2xz\ge0\Rightarrow x^2+z^2\ge2xz\)

Cộng vế với vế, ta được:

\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)(đpcm)

Đinh Đức Hùng
30 tháng 4 2017 lúc 16:55

\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)

\(\Leftrightarrow x^2+y^2+z^2-\frac{1}{3}\cdot\left(x+y+z\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-\frac{1}{3}\left(x^2+y^2+z^2+2xy+2yz+2xz\right)\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-\frac{1}{3}\left(x^2+y^2+z^2\right)-\frac{2}{3}\left(xy+yz+zx\right)\ge0\)

\(\Leftrightarrow\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{2}{3}\left(xy+yz+xz\right)\ge0\)

\(\Leftrightarrow\frac{2}{3}\left(x^2+y^2+z^2-xy-yz-xz\right)\ge0\) (1)

Ta cần chứng minh : \(x^2+y^2+z^2-xy-yz-xz\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\) (luôn đúng)

=> bđt (1) đúng

\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) (đpcm)

Chuyên hỏi bài
Xem chi tiết
Akai Haruma
29 tháng 12 2019 lúc 23:03

Lời giải:

Xét hiệu:

\(x^2+y^2+z^2-\frac{(x+y+z)^2}{3}=\frac{3(x^2+y^2+z^2)-(x+y+z)^2}{3}=\frac{2x^2+2y^2+2z^2-2xy-2yz-2xz}{3}\)

\(=\frac{(x^2+y^2-2xy)+(y^2+z^2-2yz)+(z^2+x^2-2zx)}{3}=\frac{(x-y)^2+(y-z)^2+(z-x)^2}{3}\geq 0, \forall x,y,z\)

\(\Rightarrow x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}\) (đpcm)

Dấu "=" xảy ra khi $(x-y)^2=(y-z)^2=(z-x)^2=0$ hay $x=y=z$

Khách vãng lai đã xóa
肖赵战颖
Xem chi tiết
Bui Huu Manh
Xem chi tiết

3 + (x²/y² + y²/x²) + (x²/z² + y²/z²) + (z²/x² + z²/y²) 
x²/y² + y²/x² ≥ 2 (Theo AM - GM) 
Nên A ≥ 5 + (x²/z² + y²/z²) + (z²/x² + z²/y²) 
Sử dụng 2 BĐT quen thuộc sau: 
a² + b² ≥ (1/2)*(a + b)² 
1/a + 1/b ≥ 4/(a + b) 

Khách vãng lai đã xóa

Đề thi vào lớp 10 môn Toán tỉnh Nghệ An năm 2014

https://thi.tuyensinh247.com/de-thi-vao-lop-10-mon-toan-tinh-nghe-an-nam-2014-c29a17566.html

Vào đó xem cho nó full :)))

Khách vãng lai đã xóa