Lời giải:
Xét hiệu:
\(x^2+y^2+z^2-\frac{(x+y+z)^2}{3}=\frac{3(x^2+y^2+z^2)-(x+y+z)^2}{3}=\frac{2x^2+2y^2+2z^2-2xy-2yz-2xz}{3}\)
\(=\frac{(x^2+y^2-2xy)+(y^2+z^2-2yz)+(z^2+x^2-2zx)}{3}=\frac{(x-y)^2+(y-z)^2+(z-x)^2}{3}\geq 0, \forall x,y,z\)
\(\Rightarrow x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}\) (đpcm)
Dấu "=" xảy ra khi $(x-y)^2=(y-z)^2=(z-x)^2=0$ hay $x=y=z$