Những câu hỏi liên quan
Quỳnh Anh
Xem chi tiết
tthnew
16 tháng 1 2021 lúc 20:31

Áp dụng bất đẳng thức Cauchy-Schwarz và bất đẳng thức AM-GM, ta có:

\(a^2+3\left(b^2+c^2+d^2\right)\ge a^2+\left(b+c+d\right)^2\ge2a\left(b+c+d\right)\)

Đẳng thức xảy ra khi $b=c=d=\frac{a}{3}.$

Bình luận (2)
tthnew
16 tháng 1 2021 lúc 20:44

Cách biến đổi tương đương thì bạn đưa về dạng

\(\text{VT}-\text{VP}=\dfrac{1}{3} \left( a-3\,b \right) ^{2}+\dfrac{1}{3} \left( a-3\,d \right) ^{2}+\dfrac{1}{3} \left( a-3\,c \right) ^{2}\geqslant 0\)

Bình luận (1)
vung nguyen thi
Xem chi tiết
Lê Bùi
18 tháng 12 2017 lúc 9:45

c) theo bđt cauchy ta có

\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+1\ge2b\\a^2+1\ge2a\end{matrix}\right.\)

cộng hết lại rút 2 đi \(\Rightarrowđpcm\)

Bình luận (0)
Lê Bùi
18 tháng 12 2017 lúc 9:47

b)theo bđt bunhiacopxki ta có

\(\left(1^2+a^2\right)\left(1^2+b^2\right)\ge\left(1+ab\right)^2\)

\(\Rightarrowđpcm\)

Bình luận (0)
Lê Bùi
18 tháng 12 2017 lúc 9:59

theo bđt cauchy ta có

\(-\left(a^2d^2+b^2c^2\right)\le-2abcd\)

\(\Leftrightarrow a^2c^2-a^2d^2+b^2d^2-b^2c^2\le a^2c^2-2abcd+b^2d^2\)

\(\Leftrightarrow a^2(c^2-d^2)-b^2(c^2-d^2)\le a^2c^2-2abcd+b^2d^2\)

\(\Leftrightarrow(c^2-d^2)\left(a^2-b^2\right)\le(ac-bd)^2\)

\(\Rightarrowđpcm\)

Bình luận (0)
Mộc Miên
Xem chi tiết
Thiện Nguyễn
26 tháng 3 2020 lúc 10:06
https://i.imgur.com/HaXu9jP.jpg
Bình luận (0)
 Khách vãng lai đã xóa
Thiện Nguyễn
26 tháng 3 2020 lúc 10:18
https://i.imgur.com/b0eBoIF.jpg
Bình luận (0)
 Khách vãng lai đã xóa
Thiện Nguyễn
26 tháng 3 2020 lúc 10:06
https://i.imgur.com/qCoi6pV.jpg
Bình luận (0)
 Khách vãng lai đã xóa
Mộc Miên
Xem chi tiết
Nguyễn Minh Đăng
Xem chi tiết
Edogawa Conan
30 tháng 7 2020 lúc 8:53

Đặt a2 = x; b2 = y; c2 = z

Khi đó, ta có: (x + y)(y + z)(z + x) \(\ge\)xyz

<=> (xy + xz + y2 + yz)(z + x) - 8xyz \(\ge\)0

<=> xyz + xz2 + y2z + yz2 + x2y + x2z + y2x + xyz - 8xyz \(\ge\)0

<=> (xz2 +xy2) + (y2z + zx2) + (yz2 + yx2) - 6xyz \(\ge\)0

<=> (xz2 - 2xyz + xy2) + (y2z + zx- 2xyz) + (yz+ yx2 - 2xyz) \(\ge\)0

<=> x(z2 - 2yz + y2) + z(y2 + x2 - 2xy) + y(z2 + x2 - 2xz) \(\ge\) 0

<=> x(z - y)2 + z(y - x)2 + y(z - x)2 \(\ge\)0

hay a2(c2 - b2)2 + c2(b2 - a2)2 + b2(c2 - a2)2 \(\ge\)0 (luôn đúng với mọi a;b;c)

=> Đpcm

Bình luận (0)
 Khách vãng lai đã xóa
Phan Nghĩa
30 tháng 7 2020 lúc 8:44

Đặt \(a^2;b^2;c^2\rightarrow x;y;z\left(x;y;z\ge0\right)\)

Khi đó bài toán trở thành \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8xyz\)

\(< =>\left(x+y\right)\left(y+z\right)\left(z+x\right)-8xyz\ge0\)

\(< =>a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2\ge0\)*đúng*

Dấu "=" xảy ra khi và chỉ khi \(x=y=z\)hay \(a^2=b^2=c^2\)

Bình luận (0)
 Khách vãng lai đã xóa
Kiyotaka Ayanokoji
30 tháng 7 2020 lúc 8:44

Áp dụng BĐT Cauchy-Schwarz ta có:

\(a^2+b^2\ge2ab\)

Tương tự \(b^2+c^2\ge2bc\)

                \(c^2+a^2\ge2ca\)

\(\Rightarrow\left(a^2+b^2\right).\left(b^2+c^2\right).\left(c^2+a^2\right)\ge8a^2b^2c^2\)

Dấu "=" xảy ra khi\(a=b=c\)

Học tốt 

Bình luận (0)
 Khách vãng lai đã xóa
Aeris
Xem chi tiết
Phạm Thế Mạnh
10 tháng 9 2018 lúc 21:45

\(1.\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
Dấu "=" xảy ra khi \(a=b=c=1\)
\(2.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)
Dấu "=" xảy ra khi \(a=b=c=0\)
\(3.\left(\frac{a}{2}-b\right)^2+\left(\frac{a}{2}-c\right)^2+\left(\frac{a}{2}-d\right)^2+\left(\frac{a}{2}-e\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
Dấu "=" xảy ra khi \(\frac{a}{2}=b=c=d=e\)
4. Ta có: \(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2\ge2ab\)

\(\left(c-d\right)^2\ge0\Rightarrow c^2+d^2\ge2cd\)
\(\Rightarrow a^2+b^2+c^2+d^2\ge2ab+2cd\)

\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3ab+3cd\)
Ta lại có:\(\left(\sqrt{ab}-\sqrt{cd}\right)^2\ge0\Rightarrow ab+cd\ge2\sqrt{abcd}=2\)

\(\Rightarrow3\left(ab+cd\right)\ge6\)
\(\Rightarrow a^2+b^2+c^2+d^2+ab+cd\ge3\left(ab+cd\right)\ge6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}a=b\\c=d\\ab=cd\end{cases}}\Leftrightarrow a=b=c=d\)

Bình luận (0)
KCLH Kedokatoji
Xem chi tiết
Ngô Chi Lan
28 tháng 9 2020 lúc 19:09

Não đặc-.-

Nếu sửa đề ntn thì mk nghĩ không ngược dấu mới làm được nek

Bài 1: CMR: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\) với a,b,c dương

Bài làm:

Ta có: \(\frac{a^2+b^2+c^2}{ab+bc+ca}-\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

\(\ge\frac{a^2+b^2+c^2}{\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}}-\frac{8abc}{2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}}\)

\(=\frac{a^2+b^2+c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}-\frac{8abc}{8abc}\)

\(=1-1=0\)

Dấu "=" xảy ra khi: \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
KCLH Kedokatoji
28 tháng 9 2020 lúc 19:10

Vãi bạn, mình đang đưa các bài tập về các bđt ngược chiều nên đề như thế là đúng r

Bình luận (0)
 Khách vãng lai đã xóa
Phan Nghĩa
28 tháng 9 2020 lúc 19:25

bài 1 là AM-GM ở vt xong biến đổi tương đương phải không ạ ?

Bình luận (0)
 Khách vãng lai đã xóa
✰✰ βєsէ ℱƐƝƝIƘ ✰✰
Xem chi tiết
Nguyễn Việt Hoàng
8 tháng 10 2019 lúc 23:30

Bài nek cũng dễ mà bạn.

\(\left(a^2+b^2\right)\left(a^2+1\right)\ge4a^2b\)

\(\Leftrightarrow a^4+a^2b^2+a^2+b^2-4a^2b\ge0\)

\(\Leftrightarrow a^4-2a^2b+b^2+a^2b^2-2a^2b+a^2\ge0\)

\(\Leftrightarrow\left(a^2-b\right)^2+a^2\left(b-1\right)^2\ge0\)( đúng )

Vậy.................

Bình luận (0)
Trần Thiên Kim
Xem chi tiết
ngonhuminh
9 tháng 4 2017 lúc 13:59

Lời giải

\(\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\ge8\)

\(A=\left(a^2+\dfrac{1}{a^2}\right)\left(b^2+\dfrac{1}{b^2}\right)\left(c^2+\dfrac{1}{c^2}\right)\)

\(A=\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right].\left[\left(a^2+\dfrac{1}{a^2}-2\right)+2\right]\)

\(A=\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right].\left[\left(a-\dfrac{1}{a}\right)^2+2\right]\)Thừa nhận cần c/m câu khác: \(\left(x-\dfrac{1}{x}\right)^2\ge0\forall x\ne0\)

\(\Rightarrow A\ge\left[\left(0\right)+2\right].\left[\left(0\right)+2\right].\left[\left(0\right)+2\right]=8\)

\(\Rightarrow A\ge8\forall_{a,b,c\ne0}\)=> dpcm

Đẳng thức khi \(\left\{{}\begin{matrix}\left|a\right|=1\\\left|b\right|=1\\\left|c\right|=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\pm1\\b=\pm1\\c=\pm1\end{matrix}\right.\) Không tin bạn thử a=b=c=-1<0 vào thử xem

Bình luận (0)
Phan Cả Phát
6 tháng 4 2017 lúc 20:50

Có một chút vần đề nha ĐK phải là a,b,c > 0 nhé

bài này ta sẽ chứng minh lần lượt \(a^2+\dfrac{1}{a^2};b^2+\dfrac{1}{b^2};c^2+\dfrac{1}{c^2}\)lớn hơn hoặc bằng 2

Ta sẽ giả sử

\(a^2+\dfrac{1}{a^2}\ge2\)(2)

\(\Leftrightarrow a^2-2+\dfrac{1}{a^2}\ge0\Leftrightarrow a^2-2a\times\dfrac{1}{a}+\dfrac{1}{a^2}\ge0\)

\(\Leftrightarrow\left(a-\dfrac{1}{a}\right)^2\ge0\)(luôn đúng) (1)

BĐT (2) đúng suy ra BĐT (1) đúng

Dấu '=' xảy ra khi và chỉ khi \(a=\dfrac{1}{a}\Leftrightarrow a^2=1\Leftrightarrow a=1\)(*)

CMTT ta có : \(b^2+\dfrac{1}{b^2}\ge2\) (=) b = 1 (**)

\(c^2+\dfrac{1}{c^2}\ge2\) (=) c = 1 (***)

Nhân vế theo vế của (*) , (**) , (***) ta được

\(\left(a^2+\dfrac{1}{a^2}\right).\left(b^2+\dfrac{1}{b^2}\right).\left(c^2+\dfrac{1}{c^2}\right)\ge2^3=8\)(đpcm)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 1

Bình luận (1)
ngonhuminh
9 tháng 4 2017 lúc 13:26

a,b,c>0 nó là đề khác cái đề này a,b,c khác 0 Phan Cả Phát

Lời giải phải đúng với đề

Có thể cái đề này sai so với đề khác (trên mạng hoặc ở đâu đó, cái đó không quan trọng và không nên quan tâm)

p/s: Nội Hàm cái đề này không sai --> chẳng lý do gì lại sửa đề cả

Bình luận (0)