Cho Δ ABC cân tại A (góc A<900).Hai đường cao BD và CE cắt nhau tại H.Tia AH cắt BC tại I
a.Chứng minh rằng ΔABD=ΔACE.
b.Chứng minh I là trung điểm của BC.
Cho Δ ABC vuông cân tại A. Kẻ tia phân giác của góc A cắt BC tại H. Trên tia AB, AC lấy điểm N và M sao cho BN=AM. Chứng minh rằng: a, Δ AHN= Δ CHM b, Δ AHM= Δ BHN c, Δ MHN vuông cân
a: Xet ΔAHN và ΔCHM có
AH=CH
góc HAN=góc HCM
AN=CM
=>ΔAHN=ΔCHM
b: Xet ΔAHM và ΔBHN co
AH=BH
góc HAM=góc HBN
AM=BN
=>ΔAHM=ΔBHN
Cho Δ ABC cân tại A (góc A nhọn,AB>AC). Gọi H là trung điểm của BC.
a, Chứng minh Δ AHB= ΔAHC và AH vuông góc với BC tại H
b, Gọi M là trung điểm của AB. Qua A kẻ đường thẳng song song với BC, cắt tia HM tại D. Giả sử AB=20cm,AD=12cm.Chứng minh AD=AH. Tính độ dài đoạn thẳng AH.
c,Tia phân giác của góc BAD cắt tai CB tại N. Kẻ NK ⊥AD tại K. NQ ⊥AB tại Q. Chứng minh AQ=AK và ANQ=35độ + 1/4 BAC. d, CD cắt AB tại S. Chứng minh BC<3 ×AS. (vẽ hình cho em với ạ giúp em ạ)
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC ở E.Kẻ ED vuông góc với BC (D thuộc BC),đường thẳng ED cắt AB tại K .Chứng minh:
a/Δ ABE = Δ DBE
b/EC = È
c/Δ BCK cân
Cho Δ ABC cân tại A. Kẻ AH vuông góc với BC tại H. Qua H kẻ đường thẳng // với AC cắt AB tại D
a) CM: Δ ABH = Δ ACH
b) CM: Δ ADH cân và DH = \(\dfrac{1}{2}\)AB
c) gọi G là giao điểm của AH và CD. Qua A kẻ đường thẳng // BC cắt đường thẳng BG tại K. CM: AB // CK
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: góc DAH=góc HAC=góc DHA
=>ΔDAH cân tại D
=>góc DHB=góc DBH
=>DH=DB=DA
=>D là trung điểm của AB
=>DH=1/2AB
Cho tam giác ABC vuông tại A, có góc B = 60o và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a/ Chứng minh: Δ ABD = Δ EBD.
b/ Chứng minh: ABE là tam giác đều.
c/ Tính độ dài cạnh BC.
Cho ∆ABC cân tại A. Trên tia đối của các tia BC và CB lấy theo thứ tự 2 điểm D và E sao cho BD = CE.
a. Chứng minh: ∆ADE cân.
b. Gọi M là trung điểm của BC. Chứng minh AM là tia phân giác của góc DAE.
c. Từ B và C kẻ BH và CK theo thứ tự vuông góc với AD và AE. Chứng minh: BH = CK.
Có ai biết ko chỉ mình với ạ
Bài 1:
a, Xét tg ABD và tg EBD, có:
góc A= góc E(90o)
BD chung
góc ABD= góc DBE(tia phân giác)
=>tg ABD= tg EBD.
b, Ta có: tg ABD= tg DBE(cm câu a)
=>AB=BE(2 cạnh tương ứng)
=>tg ABE cân tại B.
Mà tg cân ABE có góc B=60o, nên tg ABE là tg đều.
c, Ta có: góc A+ góc B+góc C=180o(ĐL tổng 3 góc của tg)
=>góc B=180o-(góc A+ góc C)=180o-(90o+60o)=30o
Vì tg ABE là tg đều, nên góc A=60o.
Ta có: góc A=góc BAE+ góc AEC.
=>90o=60o+ góc AEC=30o.
=> góc AEC= góc C(=30o)
=>tg AEC cân tại E.
=>AE=EC.
Mà AE=5cm(tg đều), nên EC=5cm.
Vậy, độ dài cạnh BC là:
BE+EC=5+5=10.
=>BC= 10cm.
Bài 2:
a,Ta có: tg ABC cân tại A.
=>AB=AC và góc ABC= góc ACB.
Xét tg ABD và tg ACE, có:
AB=AC(cmt)
góc B= góc C(cmt)
BD=CE(gt)
=>tg ABD= tg ACE(c. g. c)
=>AD=AE(2 cạnh tương ứng)
=>tg ADE cân tại A.
b, Xét tg ABM và tg ACM, có:
BM=ME(M là trung điểm)
góc BAM= góc MAC(tia phân giác)
AB=AC(cmt câu a)
=>tg ABM= tg AMC(g. c. g)
=>góc BAM= góc BAC(2 góc tương ứng)
=>AM là tia phân giác của góc BCA.
Mà tg ABC và tg ADE đều là tg cân tại A.
=>AM là tia phân giác của góc EAD.
Cho Δ ABC vuông tại A , biết AB = 6cm ; AC = 8cm . Vẽ đường cao AH a) Đường phân giác của góc B cắt AH và AC lần lượt tại I và D . Chứng minh Δ AID cân b) Kẻ HK song song với BD ( K thuộc AC ) . Chứng minh AD ² = DK . DC
làm dùm mình nha các bạn có hình của đường cao ah xong kẻ thêm những chi tiết của câu a và b nha
Cho Δ ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và đường thẳng DH cắt đường thẳng AB tại K. Chứng minh
a) Δ ABD = ΔHBD
b) DK = DC
c) Tam giác KBC là tam giác cân.
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó:ΔABD=ΔHBD
b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó: ΔADK=ΔHDC
Suy ra: DK=DC
c: Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
hay ΔBKC cân tại B
Cho Δ ABC cân tại A có góc A bằng 96 độ . Lấy M nằm trong ΔABC sao cho góc MBC bằng 12 độ và góc MCB bằng 24 độ . Chứng minh rằng MA=MC
Cho Δ ABC cân tại A, góc A bằng 90° . Cho D là điểm nằm trong tam giác ABC sao cho góc DBC bằng 10°, DCB bằng 30°. Tính góc BAD.
I study in a very comfortable school. It has a lot of things: swimming pool, music club, each class has an air conditioner, students can eat things in the backyard cafeteria, soccer court, basketball court, Fully equipped labs...I love my school.
xog r đó bạn ơi
Cho Δ ABC cân tại A. Các đường cao BH,CK
a) Chứng minh Δ ACK = Δ ABH : △BKC = △ CHB
b) Gọi I là giao điểm của BH và CK. Chứng minh AI ⊥BC và AI là tia P/giác của góc BAC
bn tự vẽ hình nhé
a)Xét tam giác ACK và tam giác ABH:
góc K=góc H(=90độ)
AB=AC(gt)
góc A chung
vậy 2 tam giác này bằng nhau (cgv.gnk)