bn tự vẽ hình nhé
a)Xét tam giác ACK và tam giác ABH:
góc K=góc H(=90độ)
AB=AC(gt)
góc A chung
vậy 2 tam giác này bằng nhau (cgv.gnk)
bn tự vẽ hình nhé
a)Xét tam giác ACK và tam giác ABH:
góc K=góc H(=90độ)
AB=AC(gt)
góc A chung
vậy 2 tam giác này bằng nhau (cgv.gnk)
Cho tam giác ABC có AB=AC=5cm BC=6cm đường cao AH xuất phát từ đỉnh A của tam giác ABC (H thuộc BC) a)chứng minh tam giác AHB =AHC b)chứng minh AH là tia phân giác của góc A c)tính độ dài các đoạn thẳng BH và AH
Cho tam giác ABC cân tại A có đường cao BD và CE cắt nhau tại H.a,chứng minh tam giác ADB=tam giác AEC,b,Chứng minh tam giác HDE là tam giác cân,c,So sánh HB và HD,d,Gọi M là trung điểm của HC,N là trung điểm của HB,I là giao điểm của BM và CN.Chứng minh ba điểu A,H,I thẳng hàng
help với:(((
Cho tam giác ABC, góc A =135 độ,AH là đường cao . Vẽ BK vuông góc AC,CK cắt HA tại E
a, Chứng minh BA vuông góc với EC.
b, Chứng minh AK=BK.
c, So sánh AE và BC.
Bài 1:
a) Cho tam giác ABC có các đường cao BD và CE bằng nhau. Chứng minh rằng tam giác đó là tam giác cân.
b) Cho tam giácABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC.
Cho tam giác ABC vuông tại A, AK là đường cao. Gọi M,N lần lượt là hình chiếu của K trên AB, AC. Gọi D là trung điểm AB và I là điểm đối xứng của A qua K. Chứng minh CD vuông góc IN
cho tam giác ABC có AB=AC. Lấy điểm H thuộc cạnh AC ,K thuộc cạnh AB sao cho AH=AK . Gọi O là giao điểm của BH và CK
a,CMR: BH=CK
b, CMR: tam giác OKB= tam giác OHC
c, CMR: AO là tia phân giác của BAC
Cho tam giác ABC. Hai đường phân giác của các cặp góc ngoài đỉnh B và C, đỉnh C và A, đỉnh A và B lần lượt cắt nhau tại A', B', C'. Chứng minh rằng AA', BB', CC' là các đường cao của tam giác A'B'C'. Từ đó suy ra giao điểm của ba đường phân giác của tam giác ABC là trực tâm của tam giác A'B'C' ?
Cho tam giác ABC cân tại A, đường cao CH cắt tia phân giác của góc A tại D. Chứng minh rằng BD vuông góc với AC ?
Mn ơi giúp mình vs Cho tam giác ABC cân tại A, có AD là đường cao. Gọi N là trung điểm của AB. Chứng minh ND//AC