Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Lê
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 9 2021 lúc 16:24

a. 

Đề bài sai, ví dụ \(n=1\) lẻ nhưng  \(1^2+4.1+8=13\) ko chia hết cho 8

b.

n lẻ \(\Rightarrow n=2k+1\)

\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

\(=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Do \(k\left(k+1\right)\left(k+2\right)\) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

\(\Rightarrow8k\left(k+1\right)\left(k+2\right)\) chia hết cho 48

cô bé thì sao nào 992003
Xem chi tiết
soyeon_Tiểu bàng giải
29 tháng 6 2016 lúc 16:38

Ta có:

n2 + 4n + 5

= n2 - 1 + 4n + 6

= (n - 1).(n + 1) + 2.(2n + 3)

Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp

=> (n - 1).(n + 1) chia hết cho 8
Mà 2n + 3 lẻ => 2n + 3 không chia hết cho 4 => 2.(2n + 3) không chia hết cho 8

=> (n - 1).(n + 1) + 2.(2n + 3) không chia hết cho 8

=> n2 + 4n + 5 không chia hết cho 8

=> đpcm

Ủng hộ mk nha ^-^

Sailor moon
Xem chi tiết
huongkarry
Xem chi tiết
doan thi khanh linh
1 tháng 1 2018 lúc 9:10

Ta có:

n2 + 4n + 5

= n2 - 1 + 4n + 6

= (n - 1).(n + 1) + 2.(2n + 3)

Do n lẻ nên n - 1 và n + 1 là 2 số chẵn liên tiếp

=> (n - 1).(n + 1) chia hết cho 8
Mà 2n + 3 lẻ => 2n + 3 không chia hết cho 4 => 2.(2n + 3) không chia hết cho 8

=> (n - 1).(n + 1) + 2.(2n + 3) không chia hết cho 8

=> n2 + 4n + 5 không chia hết cho 8

=> đpcm

Ủng hộ mk nha ^-^

  
Ngu Ngu Ngu
17 tháng 7 2017 lúc 20:14

Giải:

Đặt \(n=2k+1\) (\(n\) lẻ) ta có:

\(n^2+4n+5=\left(2k+1\right)^2+4\left(2k+1\right)+5=\left(4k^2+4k+1\right)+\left(8k+4\right)+5\)

\(=\left(4k^2+4k\right)+\left(8k+8\right)+2=4k\left(k+1\right)+8\left(k+1\right)+2\)

\(k\left(k+1\right)⋮2\Leftrightarrow\hept{\begin{cases}4k\left(k+1\right)⋮8\\8\left(k+1\right)⋮8\end{cases}}\)\(2\) không chia hết cho \(8\)

Nên \(n^2+4n+5\) không chia hết cho \(8\) với mọi \(n\) là số lẻ (Đpcm)

Doraemon
2 tháng 7 2018 lúc 7:35

Ta có:

\(n^2+4n+5\)

\(=n^2-1+4n+6\)

\(=\left(n-1\right).\left(n+1\right)+2.\left(2n+3\right)\)

Do \(n\)lẻ nên \(n-1\)và \(n+1\)là hai số chẵn liên tiếp.

\(\Rightarrow\left(n-1\right).\left(n+1\right)\)chia hết cho 8

Mà \(2n+3\)lẻ \(\Rightarrow2n+3\)không chia hết cho 4 \(\Rightarrow2.\left(2n+3\right)\)không chia hết cho 8.

\(\Rightarrow\left(n-1\right).\left(n+1\right)+2.\left(2n+3\right)\)không chia hết cho 8.

\(\Rightarrow n^2+4n+5\)không chia hết cho 8.

\(\RightarrowĐpcm\)

tuananh
Xem chi tiết
Nguyen tien dung
Xem chi tiết
Tân Nguyễn Hoàng
27 tháng 3 2016 lúc 19:51

Đặt n=2k+1 với k thuộc Z 
A=(2k+1)^2+4(2k+1)+5=4k^2+12k+10= (2k+3)^2+1 
ta biết 1 số bình phương chia cho 8 thì dư 1 hoặc 3(cậu nên chứng minh thêm bài toán phụ này) 
khi đó A chia 8 sẽ dư 2 hoăc 4,suy ra đpcm

Hoàng Hưng Đạo
Xem chi tiết
missing you =
15 tháng 5 2021 lúc 6:22

phân tích n^2+4n+8=(n+1)(n+3)

vì là số tự nhiên lẻ nên đặt n=2k+1(k thuộc N)

=>n^2+4n+8=(n+1)(n+3)=(2k+2)(2k+4)

=4.(k+1)(k+2)

(k+1)(k+2) là tích 2 số tự nhiên liên tiếp chia hết cho 2

=>4.(k+1)(k+2)\(⋮\)8

 

missing you =
15 tháng 5 2021 lúc 6:22

bài kia làm tương tự

asuna
Xem chi tiết
Hoang Thiên Di
29 tháng 7 2017 lúc 10:02

Ta có : \(n^2+4n+5=\left(n+2\right)^2+1\)

Giả sử \(\left(n+2\right)^2+1\) \(⋮8\)

Ta có n lẻ => n+2 lẻ => (n+2)2 lẻ

Vì (n+2)2 là số chính phương lẻ nên chia 8 chỉ dư 1

<=> ( n+2)2 chia 8 dư 1

=> (n+2)2 + 1 chia 8 dư 2 => mâu thẫn với giả sử => điều giả sư sai => n2 + 4n + 5 không chia hết cho 8 ( đpcm)

Lăng Thu Hương
Xem chi tiết