|2x−4|+4=2x .
2x/4 = 25/2x
vd: 2x/4 là 2x phần 4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
cmr:1-2/x-(2x+x^2/4+2x+x^2 + 2x-x^2/4-2x+x^2):(16-8x/4-2x+x^2 -16+8x/4+2x+x^2)=(x-1/x)^2
Rút gọn :
1. (2x-5)(3x+1)-(x-3)^2+(2x+5)^2-(3x+1)^3
2. (2x-1)(2x+1)-3x-2)(2x+3)-(x-1)^3+(2x+3)^3
3. (x-2)(x^2+2x+4)-(3x-2)^3+(3x-4)^2
4. (7x-1)(8x+2)-(2x-7)^2-(x-4)^3-(3x+1)^3
5. (5x-1)(5x+1)-(x+3)(x^2-3x+9)-(2x+4)^2-(3x-4)^2+(2x-5)^3
6. (4x-1)(x+2)-(2x+5)^2-(3x-7)^2+(2x+3)^3=(3x-1)^3
1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)
=-27x^3-18x^2+4x+10
2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27
=7x^3+37x^2+46x+33
5:
\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)
\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)
=7x^3-48x^2+8x-35
Đa thức P(x) = 2x^4 + 3x^2 − x^3 − 3x^4 − x^2 − 2x + 1 sau khi được thu gọn và sắp xếp theo bậc giảm dần của biến là:
A. P(x) = x^4 − x^3 + 2x^2 − 2x + 1
B.P(x) = −x^4 − x^3 + 3x^2 − 2x + 1
C. P(x) = −x^4 − x^3 + 2x^2 − 2x + 1
D. P(x) = x^4 − x^3 − 2x^2 − 2x + 1
ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2};-1;\dfrac{-3}{2};-2\right\}\)
Ta có: \(\dfrac{4}{2x+1}-\dfrac{2}{2x+3}=\dfrac{1}{2x+4}-\dfrac{3}{2x+2}\)
\(\Leftrightarrow\dfrac{4\left(2x+3\right)}{\left(2x+1\right)\left(2x+3\right)}-\dfrac{2\left(2x+1\right)}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{2x+2}{\left(2x+2\right)\left(2x+4\right)}-\dfrac{3\left(2x+4\right)}{\left(2x+2\right)\left(2x+4\right)}\)
\(\Leftrightarrow\dfrac{8x+12-4x-2}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{2x+2-6x-12}{\left(2x+2\right)\left(2x+4\right)}\)
\(\Leftrightarrow\dfrac{4x+10}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{-4x-10}{\left(2x+2\right)\left(2x+4\right)}\)
\(\Leftrightarrow\dfrac{4x+10}{\left(2x+1\right)\left(2x+3\right)}-\dfrac{-4x-10}{\left(2x+2\right)\left(2x+4\right)}=0\)
\(\Leftrightarrow\dfrac{4x+10}{\left(2x+1\right)\left(2x+3\right)}+\dfrac{4x+10}{\left(2x+2\right)\left(2x+4\right)}=0\)
\(\Leftrightarrow\left(4x+10\right)\left(\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}+\dfrac{1}{\left(2x+2\right)\left(2x+4\right)}\right)=0\)
\(\Leftrightarrow2\left(2x+5\right)\left(\dfrac{\left(2x+2\right)\left(2x+4\right)}{\left(2x+1\right)\left(2x+2\right)\left(2x+3\right)\left(2x+4\right)}+\dfrac{\left(2x+1\right)\left(2x+3\right)}{\left(2x+1\right)\left(2x+2\right)\left(2x+3\right)\left(2x+4\right)}\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(4x^2+8x+4x+8+4x^2+6x+2x+6\right)=0\)(Vì \(\left(2x+1\right)\left(2x+2\right)\left(2x+3\right)\left(2x+4\right)\ne0\forall x\) thỏa mãn ĐKXĐ)
\(\Leftrightarrow\left(2x+5\right)\left(8x^2+20x+14\right)=0\)
mà \(8x^2+20x+14>0\forall x\)
nên 2x+5=0
\(\Leftrightarrow2x=-5\)
\(\Leftrightarrow x=-\dfrac{5}{2}\)
Vậy: \(S=\left\{-\dfrac{5}{2}\right\}\)
\(\dfrac{4}{2x+1}-\dfrac{2}{2x+3}=\dfrac{1}{2x+4}-\dfrac{3}{2x+2}\)
\(\Leftrightarrow\dfrac{2x+5}{2x+1}-\dfrac{2x+5}{2x+3}=\dfrac{2x+5}{2x+4}-\dfrac{2x+5}{2x+2}\)
\(\Leftrightarrow\left(2x+5\right)\left(\dfrac{1}{2x+1}-\dfrac{1}{2x+3}-\dfrac{1}{2x+4}+\dfrac{1}{2x+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{5}{2}\\\dfrac{1}{2x+1}-\dfrac{1}{2x+3}-\dfrac{1}{2x+4}+\dfrac{1}{2x+2}=0\left(1\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow\dfrac{2x+3-2x-1}{\left(2x+1\right)\left(2x+3\right)}+\dfrac{2x+4-2x-2}{\left(2x+4\right)\left(2x+2\right)}=0\)
\(\Leftrightarrow\dfrac{2}{\left(2x+1\right)\left(2x+3\right)}+\dfrac{2}{\left(2x+4\right)\left(2x+2\right)}=0\)
\(\Leftrightarrow\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}=-\dfrac{1}{\left(2x+4\right)\left(2x+2\right)}\)
......
(Vô lí)
(2x-8)^4+(3y+45)^2=0
(2x-10)^6+(x+y-7)^4=0
(5x-15)^8+(2x-y+4)^4=0
(2x-8)^4+(3y+45)^2=0
* a mũ 2 hay 4 hay 6 ,... ( những số tự nhiên chẵn khác 0 ) đều lớn hơn hoặc bằng 0 với mọi a
Áp dụng :
a) (2x-8)^4 + (3y+45)^2 = 0
Vì : (2x-8)^4 >=0 , (3y+45)^2 >=0 với mọi x,y
=> (2x-8)^4 + (3y+45)^2 >=0
Dấu "=" xảy ra khi : 2x-8=3y+45=0
->(x;y)=(4;-15)
Những câu sau làm tương tự, ta được :
b) ...
Dấu "=" xảy ra khi : 2x-10=0 và x+y-7=0
->x=5 và 5+y-7=0
->(x;y)=(5;2)
c) 5x-15=0 và 2x-y+4=0
->x=3 và 6-y+4=0
->(x;y)=(3;10)
d) Trùng câu a
a)x=4,y=-15
b)x=5,y=2
còn câu c) mik chịu