\(|2x-4|+4=2x\)
\(|2x-4|=2x-4\)
\(|2x-4|=-2x\)
\(\Rightarrow2x-4=\pm2x\)
Ta có: \(\left|2x-4\right|+4=2x\)
\(\Leftrightarrow\left|2x-4\right|=2x-4\)
hay \(m\ge2\)
\(|2x-4|+4=2x\)
\(|2x-4|=2x-4\)
\(|2x-4|=-2x\)
\(\Rightarrow2x-4=\pm2x\)
Ta có: \(\left|2x-4\right|+4=2x\)
\(\Leftrightarrow\left|2x-4\right|=2x-4\)
hay \(m\ge2\)
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
(2x-1/x)^4
(2x^2-1/x)^4
[(2x)^2-1/x]^4
[(2x)^2-1/x^2]^4
Biểu thức: 21-(2x-4)(x+1) bằng: A. 21-(4-2x).(x+1) B. 21+(4-2x).(x+1) C .21+(4-2x).(x-1)
Câu 29: Biểu thức : 21 - (2x - 4)(x + 1) bằng: A. 21 -(4- 2x)(x + 1) B. 21 + (4 -2x)(x + 1) C. 21 +(4- 2x)(x – 1)
làm phép chia :
a) (x^4 -2x^3 + 2x -1) : (x^2 - 1)
b) (x^3 -8) : (x^2 + 2x +4)
c) (x^6 - 2x^5 + 2x^4 + 6x^3 - 4x^2)n: 6x^2
d) (-2x^5 + 3x^2 - 4x^3) :2x^2
e) (15x^3 - 10x^2 + x - 2) : (x - 2)
f) (2x^4 - 3x^3 - 3x^2 + 6x - 2) : (x^2 - 2)
Giải phương trình
a ) 2 x + 3 x - 4 = 2 x - 1 x + 2 - 27
b ) x 2 - 4 - x + 5 2 - x = 0
c ) x + 2 x - 2 - x - 2 x + 2 = 4 x 2 - 4
d ) x + 1 x - 1 - x + 2 x + 3 + 4 x 2 + 2 x - 3 = 0
Bài 4: Tìm x, biết:
a) 3(2x – 3) + 2(2 – x) = –3 ; b) x(5 – 2x) + 2x(x – 1) = 13 ;
c) 5x(x – 1) – (x + 2)(5x – 7) = 6 ; d) 3x(2x + 3) – (2x + 5)(3x – 2) = 8 ;
e) 2(5x – 8) – 3(4x – 5) = 4(3x – 4) + 11; f) 2x(6x – 2x 2 ) + 3x 2 (x – 4) = 8.