Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Duy Hà
Xem chi tiết
Ẩn Danh
Xem chi tiết
Nhi Vo Lan
Xem chi tiết
Võ Lan Nhi
Xem chi tiết
Phạm Phương Anh
4 tháng 11 2017 lúc 12:35

Ta có: \(x^4:x^2=x^2\)

=> Đa thức thương của đa thức f(x) cho đa thức g(x) có dạng \(x^2+cx+d\)

=> \(f\left(x\right)=g\left(x\right).\left(x^2+cx+d\right)\)

=> \(x^4-3x^3+3x^2+ax+b=\left(x^2-3x+4\right)\left(x^2+cx+d\right)\)

=> \(x^4-3x^3+3x^2+ax+b=x^4+x^3\left(c-3\right)+x^2\left(d-3c+4\right)+x\left(4c-3d\right)+4d\)

=> \(\left\{{}\begin{matrix}c-3=-3\\d-3c+4=3\\4c-3d=a\\b=4d\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}c=0\\d=-1\\a=3\\b=-4\end{matrix}\right.\)

Vậy a = 3; b = -4

Ngoài cách đồng nhất hệ số như trên bạn có thể lam theo phương pháp giá trị riêng

Trần Quốc Lộc
4 tháng 11 2017 lúc 12:26

x-3x+3x+ax+b 4 3 2 x-3x+4 2 x-1 2 x-3x+4x 4 2 _________________________ - -x+ax+b 2 -x+3x-4 2 ______________ - (a-3)x+(b+4)

\(\Rightarrow\) Để \(f_{\left(x\right)}⋮g_{\left(x\right)}\)

\(\text{thì }\Rightarrow\left\{{}\begin{matrix}\left(a-3\right)x=0\\b+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-3=0\\b+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\)

Vậy để \(f_{\left(x\right)}⋮g_{\left(x\right)}\) thì \(a=3;b=-4\)

Lê Thị Bích Hằng
Xem chi tiết
Đoàn Đức Hà
9 tháng 12 2021 lúc 8:54

Thực hiện phép chia đa thức \(f\left(x\right)\)cho \(g\left(x\right)\)ta được: 

\(2x^3-3x^2+ax+b=\left(x^2-x+2\right)\left(2x-1\right)+\left(a-5\right)x+\left(b+2\right)\)

Để \(f\left(x\right)\)chia hết cho \(g\left(x\right)\)thì: 

\(\hept{\begin{cases}a-5=0\\b+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\).

Khách vãng lai đã xóa
tuyếtanh
Xem chi tiết
Yến Chử
Xem chi tiết

em chưa cho đa thức f(x) và g(x) nà

Nguyễn Lê Phước Thịnh
29 tháng 3 2023 lúc 22:57

a: \(\dfrac{f\left(x\right)}{g\left(x\right)}\)

\(=\dfrac{x^4-9x^3+21x^2+ax+b}{x^2-x-1}\)

\(=\dfrac{x^4-x^3-x^2-8x^3+8x^2+8x+14x^2-14x-14+\left(a+6\right)x+b+14}{x^2-x-1}\)

\(=x^2-8x+14+\dfrac{\left(a+6\right)x+b+14}{x^2-x-1}\)

Để f(x) chia hết cho g(x) thì a+6=0 và b+14=0

=>a=-6 và b=-14

b: \(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4-x^3+5x^2+x^2-x+5+a-5}{x^2-x+5}\)

\(=x^2+1+\dfrac{a-5}{x^2-x+5}\)

Để f(x) chia hết g(x) thì a-5=0

=>a=5

 

 

Nguyễn Hiền Lương
Xem chi tiết
Oh Sehun
Xem chi tiết