Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Nguyễn Linh Chi
Xem chi tiết
Vũ Nguyễn Linh Chi
Xem chi tiết
Nguyễn Anh Quân
3 tháng 12 2017 lúc 21:14

 = (5^6+5^3)+(5^5+5^2)+(5^4+5)+(5^3+1)

 = (5^3+1).(5^3+5^2+5+1)

 = 126.(5^3+5^2+5+1) chia hết cho 126

k mk nha

masrur
Xem chi tiết
Phạm Huy Hoàng
Xem chi tiết
kagamine rin len
26 tháng 2 2016 lúc 20:05

S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004

=(5+5^2+5^3+5^4)+(5^5+5^6+5^7+5^8)+...+(5^2001+5^2002+5^2003+5^2004)

=780+5^4(5+5^2+5^3+5^4)+...+5^2000(5+5^2+5^3+5^4)

=780(1+5^4+...+5^2000) chia hết cho 65

S=5+5^2+5^3+5^4+5^5+5^6+...+5^2004

=(5+5^2+5^3+5^4+5^5+5^6)+...+(5^1999+5^2000+5^2001+5^2002+5^2003+5^2004)

=19530+...+5^1998(5+5^2+5^3+5^4+5^5+5^6)

=19530(1+...+5^1998) chia hết cho 126

Trần Thị Thu Hằng
29 tháng 2 2016 lúc 11:26

Mình chưa học bài này bao giờ lun đó!!!

♡♡♡

song ngư xấu xí
Xem chi tiết
Minh Triều
10 tháng 7 2015 lúc 15:31

nhóm 5+5^3

5^2+5^4

...

5^2002 + 5^2004

Minh Triều
10 tháng 7 2015 lúc 15:28

kakaka dễ                 

Phạm Thị Hồng Huế
31 tháng 12 2015 lúc 9:42

có thể giải chi tiết ko bn

Phạm Hương Giang
Xem chi tiết

\(S=5+5^2+5^3+5^4+...+5^{2004}\)

\(S=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)

\(S=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{2003}\left(1+5\right)\)

\(S=5.6+5^3.6+...+5^{2003}.6\)

\(S=6\left(5+5^3+...+5^{2003}\right)\) chia hết cho 6 

Anh2Kar六
20 tháng 2 2018 lúc 8:52

S=5+52+53+54+55+...+52004
S=(5+54)+(52+55)+(53+56)+...+(52000+52004)
S=5x126+52x126+53x126+...+52000x126
⇒S chia hết cho 126
        
S=5+52+53+54+55+...+52004
có 65=13*5 mà tổng S chia hết cho 5 nha nên Cm S chia hết cho 13
tổng S có 2004 số số hạng được tách thành 2 phần: S=S1+S2
Với S1=5+53=130=65*2 nên S1 chia hết cho 65
S2=52+53+54+55+...+52004
(có 2002 số số hạng) mà 2002 chia hết cho 13 nên S2  chia hết cho 65
Vậy S chia hết cho 65

Bùi Vương TP (Hacker Nin...
20 tháng 9 2018 lúc 15:36

(2004-1):1+1=2004(số hạng)

Vì 2004=4.501 nên ta viết S thành 501 nhóm mỗi nhóm có 4 số hạng như sau:

S=(5+5^2+5^3+5^4)+...+(5^2001+5^2002+5^2003+5^2004)

S=5.(1+5+5^2+5^3)+...+5^2001.(1+5+5^2+5^3)

S=5.156+...+5^2001.156

S=5.26.6+...+5.26.6.5^2000

S=130.6+...+130.6.5^2000

S=130.(6+...+6.5^2000)

S chia hết cho 130 (ĐPCM)

Kimmy Nguyễn
Xem chi tiết
hà trọng hùng
Xem chi tiết
Hồ Thu Giang
29 tháng 7 2015 lúc 8:49

S = 5+52+53+54+....+52004

S = (5+52)+(53+54)+...+(52003+52004)

S = 1(5+52)+52(5+52)+.....+52002(5+52)

S = 1.30 + 52.30 +.....+52002.30

S = 30.(1+52+....+52002) chia hết cho 30

=> S chia hết cho 30 (Đpcm)

Nguyễn Hoàng Phúc
Xem chi tiết
pham trung thanh
13 tháng 12 2017 lúc 22:08

\(5^6+5^5+5^4+2.5^3+5^2+5+1\)

\(=\left(5^6+5^3\right)+\left(5^5+5^2\right)+\left(5^4+5\right)+\left(5^3+1\right)\)

\(=\left(5^3+1\right)\left(5^3+5^2+5+1\right)\)

\(=126\left(5^3+5^2+5+1\right)⋮126\)

\(\Rightarrow5^6+5^5+5^4+2.5^3+5^2+5+1⋮126\)