Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
okokok
Xem chi tiết
Nguyễn Anh Quân
30 tháng 11 2017 lúc 20:47

x^2/x^2-5x+7 >= 0

Dấu "=" xảy ra <=> x = 0

Vậy GTNN của biểu thức trên = 0 <=> x = 0

lê quang tuyến
30 tháng 11 2017 lúc 20:54

Bạn chép sai đề mất rồi

Le Manh Dung
21 tháng 12 2017 lúc 19:41

le quang tuyen oi la le quang tuyen

Quang Đẹp Trai
Xem chi tiết
Nguyễn thành Đạt
9 tháng 2 2023 lúc 20:34

Ta có : \(P\text{=}\dfrac{5x-9}{x-3}\text{=}\dfrac{5x-15+6}{x-3}\)

\(\Rightarrow P\text{=}\dfrac{5x-15}{x-3}+\dfrac{6}{x-3}\)

\(\Rightarrow P\text{=}\dfrac{5\left(x-3\right)}{x-3}+\dfrac{6}{x-3}\text{=}\dfrac{6}{x-3}+5\)

\(\Rightarrow P_{max}\Leftrightarrow x-3\text{=}1\Leftrightarrow x\text{=}4\)

\(\Rightarrow P_{max}\text{=}9\Leftrightarrow x\text{=}4\)

\(\Rightarrow P_{min}\Leftrightarrow x-3\text{=}-1\Leftrightarrow x\text{=}2\)

\(\Rightarrow P_{min}\text{=}-1\Leftrightarrow x\text{=}2\)

Unknown_Hacker
Xem chi tiết
Đinh Đức Hùng
5 tháng 10 2017 lúc 21:04

\(C=\frac{x^2}{x^2-5x+7}\)

\(\Leftrightarrow Cx^2-5Cx+7C-x^2=0\)

\(\Leftrightarrow\left(C-1\right)x^2-5Cx+7C=0\)(1)

Để \(pt\left(1\right)\) có nghiệm \(\Leftrightarrow\Delta=\left(-5C\right)^2-4\left(C-1\right)7C\ge0\)

\(\Leftrightarrow25C^2-28C^2+28C\ge0\Leftrightarrow-3C^2+28C\ge0\Leftrightarrow0\le C\le\frac{28}{3}\)

Đạt GTNN là 0 khi x = 0

Đạt GTLN là \(\frac{28}{3}\) khi \(x=\frac{14}{5}\)

Unknown_Hacker
6 tháng 10 2017 lúc 21:43

Mik có cách khác dễ hiểu hơn đó :v

Nhưng cám ơn bạn nhiều :))

Loc Xuan
26 tháng 10 2017 lúc 21:56

bạn làm cách đó lên đc k??

Phản Đối CTV
Xem chi tiết
Hoàng Tuấn Đăng
10 tháng 5 2017 lúc 22:29

a) Theo đề ra, ta có: \(x^2=yx^2-5xy+7y\)

\(\Leftrightarrow x^2-yx^2+5xy-7y=0\)

\(\Leftrightarrow\left(1-y\right)x^2+5yx-7y=0\)

Ta có: \(\Delta=25y^2+4.7y.\left(1-y\right)\)

\(\Leftrightarrow\Delta=25y^2+28y-28y^2=-3y^2+28y\) (1)

Phương trình (1) ẩn x phải có nghiệm

+) Khi y = 0 \(\Leftrightarrow x=0\)

+) \(y\ne0\) , thì (1) là phương trình bậc 2 . Phương trình (1) có nghiệm khi: \(\Delta=-3y^2+28y\ge0\)

Tắt: Dùng máy tính giải ra được \(0\le y\le\dfrac{28}{3}\)

+) \(y=0\Leftrightarrow x^2=0\Leftrightarrow x=0\)

+) \(y=\dfrac{28}{3}\Leftrightarrow x=x^2\left(1-\dfrac{28}{3}\right)+5\cdot\dfrac{28}{3}\cdot x-7\cdot\dfrac{28}{3}=0\)

\(\Leftrightarrow x=\dfrac{14}{5}\)

Vậy Min y = 0 khi x = 0; Max y = \(\dfrac{28}{3}\) khi x = \(\dfrac{14}{5}\)

ngonhuminh
10 tháng 5 2017 lúc 22:53

b) Hoàng Tuấn Đăng không tìm được để mình tìm cho

lớp 8 mới sợ lớp 9 lại không kinh dạng này

\(y=\dfrac{6-4x}{x^2+1}\)

\(yx^2+4x+y-6=0\) (1)

điều kiện y để (1) luôn có nghiệm

với y =0 ta có x=3/2 thỏa mãn

với y khác 0 để (1) có nghiệm

cần \(\Delta_{\left(x\right)}\ge0\Leftrightarrow2-y\left(y-6\right)=2+6y-y^2\ge0\)

\(\Leftrightarrow y^2-6y-2\le0\)(2)

\(\Delta_y=9+2=11\)

\(\Rightarrow N_0..\Delta_y\Leftrightarrow\left\{{}\begin{matrix}y_1=3-\sqrt{11}\\y_2=3+\sqrt{11}\end{matrix}\right.\)

Nghiệm BPT (2) \(\Leftrightarrow3-\sqrt{11}\le y\le3+\sqrt{11}\)

Kết luận

GTLN của Y là\(3+\sqrt{11}\)

GTNN của Y là \(3-\sqrt{11}\)

Đạt tại đâu thay y vào giải (1) => x

Đức Minh
10 tháng 5 2017 lúc 21:14

kkk :V đồng ý là bọn t trẩu :V nhưng chưa = m :V

thanh niên này rất biết cách để trở nên nổi tiếng :V rất giống anh Quảng :v

vả lại m tag bọn t vô bảo ngu thì còn chấp nhận :V chứ hình như trog số đó có người của t mà m rất sai lầm đã tag vào đấy thằng trẩu :V

500 ae đừng xóa câu này nhé :v giải ra cho nhục mặt nó chơi :V

Nguyễn Quốc Khánh
Xem chi tiết
nguyenquocthanh
22 tháng 10 2019 lúc 19:54

toi ko bt

Khách vãng lai đã xóa
ღ๖ۣۜLinh
22 tháng 10 2019 lúc 19:58

A= -4 - x^2 +6x

  =-(x2-6x+9)+5

=-(x-3)2+5\(\le\)5

Dấu "=" xảy ra khi x=3

Vậy...............

B= 3x^2 -5x +7

\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)

\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)

Dấu "=" xảy ra khi \(x=\frac{5}{6}\)

Vậy.................

Khách vãng lai đã xóa
Nguyễn Hiếu
Xem chi tiết
Nguyễn Quỳnh Giang
Xem chi tiết
Trần Việt Linh
12 tháng 12 2016 lúc 21:55

\(A=x^2-4x+7=\left(x^2-4x+4\right)+3=\left(x-2\right)^2+3\)

Vì: \(\left(x-2\right)^2\ge0\)

=> \(\left(x-2\right)^2+3\ge3\)

Vậy GTNN của A là 3 khi x=2

\(B=2x^2+12x-1=2\left(x^2+6x+9\right)-19=2\left(x+3\right)^2-19\)

Vì: \(2\left(x+3\right)^2\ge0\)

=> \(2\left(x+3\right)^2-19\ge-19\)

Vậy GTNN của B là -19 khi x=-3

\(C=5x-x^2=-\left(x^2-5x+\frac{25}{4}\right)+\frac{25}{4}=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Vì: \(-\left(x-\frac{5}{2}\right)^2\le0\)

=> \(-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Vậy GTLN của C là \(\frac{25}{4}\) khi \(x=\frac{5}{2}\)

Hoàng Miêu
Xem chi tiết
sakura haruko
Xem chi tiết