Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 11 2017 lúc 17:29

Đinh Đức Thắng
Xem chi tiết
myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 8:30

a: TXĐ: D=R\{-1}

\(y'=\dfrac{\left(x+m\right)'\left(x+1\right)-\left(x+1\right)'\left(x+m\right)}{\left(x+1\right)^2}\)

\(=\dfrac{x+1-x-m}{\left(x+1\right)^2}=\dfrac{1-m}{\left(x+1\right)^2}\)

Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\)

=>\(\dfrac{1-m}{\left(x+1\right)^2}< 0\)

=>1-m<0

=>m>1

b: TXĐ: D=R\{m}

\(y=\dfrac{2x-3m}{x-m}\)

=>\(y'=\dfrac{\left(2x-3m\right)'\left(x-m\right)-\left(2x-3m\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{2\left(x-m\right)-\left(2x-3m\right)}{\left(x-m\right)^2}=\dfrac{2x-2m-2x+3m}{\left(x-m\right)^2}\)

\(=\dfrac{m}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\)

=>\(\dfrac{m}{\left(x-m\right)^2}>0\)

=>m>0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 1 2019 lúc 9:08

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 2 2019 lúc 15:57

Đáp án là D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 6 2019 lúc 16:26

Đáp án D

Ta có y ' = f 1 - x + 2018 x + 2019 ' = 1 - x ' . f ' 1 - x + 2018 = - f ' 1 - x + 2018  

= - x 3 - x . g 1 - x - 2018 + 2018 = - x 3 - x . g 1 - x  mà  g 1 - x < 0 ; ∀ x ∈ ℝ

Nên y ' < 0 ⇔ - x 3 - x . g 1 - x < 0 ⇔ x 3 - x . g 1 - x > 0 ⇔ x 3 - x < 0 ⇔ [ x > 3 x < 0  

Khi đó, hàm số y = f 1 - x + 2018 x + 2019  nghịch biến trên khoảng  3 ; + ∞

myyyy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 11 2023 lúc 9:00

a: TXĐ: D=R\{3}

\(y=\dfrac{2m-x}{x-3}\)

=>\(y'=\dfrac{\left(2m-x\right)'\left(x-3\right)-\left(2m-x\right)\left(x-3\right)'}{\left(x-3\right)^2}\)

\(=\dfrac{-\left(x-3\right)-2m+x}{\left(x-3\right)^2}\)

\(=\dfrac{3-2m}{\left(x-3\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì y'>0 với mọi x thỏa mãn ĐKXĐ

=>\(\dfrac{3-2m}{\left(x-3\right)^2}>0\)

=>3-2m>0

=>2m<3

=>\(m< \dfrac{3}{2}\)

b: TXĐ: D=R\{-m}

\(y=\dfrac{x+3}{x+m}\)

=>\(y'=\dfrac{\left(x+3\right)'\left(x+m\right)-\left(x+3\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{x+m-x-3}{\left(x+m\right)^2}=\dfrac{m-3}{\left(x+m\right)^2}\)

Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\in TXĐ\)

=>\(\dfrac{m-3}{\left(x+m\right)^2}< 0\)

=>m-3<0

=>m<3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 11 2019 lúc 4:47

Đáp án D

Ta có Đáp án D

Ta có y’ = –f’(1 – x) + 2018 = –[1–(1–x)][(1–x)+2]g(1–x) – 2018 + 2018

= –x(3–x)g(1–x)

Suy ra  (vì g(1–x) < 0,  ∀ x ∈ R ) 

Vậy hàm số đã cho nghịch biến trên khoảng  3 ; + ∞

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 5 2017 lúc 14:56