Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Bích Ngọc
Xem chi tiết
nood
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 3 2023 lúc 22:19

a: \(CB=\sqrt{18^2+24^2}=30\left(mm\right)\)

Xét ΔABC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5=24/8=3mm

=>AD=9mm; CD=15mm

b: CA=24mm; CB=30mm; CE=12mm; CD=15mm

=>CA/CE=CB/CD

=>ΔCAB đồng dạng với ΔCED

=>góc CED=90 độ

Hà Anh Thư
Xem chi tiết
Yen Nhi
23 tháng 5 2021 lúc 9:09

Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.

a, Tính độ dài cạnh BC của tam giác ABC.

b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.

c, Chứng minh CB = CD.

* Hình tự vẽ 

a)

Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm

b)

Xét tam giác DBC, ta có:

BK là trung tuyến ứng với cạnh CD ( gt )

CA là trung tuyến ứng với cạnh BD ( AB = AD )

BK giao với CA tại E

=> E là trọng tâm của tam giác BDC

=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm

c)

Xét tam giác BDC, ta có:

CA là trung tuyến ứng với cạnh BD

CA là đường cao ứng với cạnh BD

=> Tam giác BDC cân tại C

=> CB = CD

Khách vãng lai đã xóa
Yen Nhi
23 tháng 5 2021 lúc 9:24

Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC

B A C

Theo đề ra: Góc A = 50 độ

                   Góc B = 60 độ

                   Góc C = 70 độ

=> Góc A < góc B < góc C

=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )

Khách vãng lai đã xóa
Xem chi tiết
Thanh Hoàng Thanh
21 tháng 1 2022 lúc 8:05

Từ đỉnh A kẻ đường thẳng vuông góc với BC tại H.

\(BD=\dfrac{3}{2}DC.\Rightarrow DC=\dfrac{2}{3}BD.\)

Ta có: \(\text{BC = BD + DC = }\) \(BD+\dfrac{2}{3}BD=\dfrac{5}{3}BD.\)

\(\Rightarrow BD=\dfrac{3}{5}BC.\)

Diện tích tam giác ABD là: \(\dfrac{1}{2}\times AH\times BD=\dfrac{1}{2}\times AH\times\dfrac{3}{5}BC\left(cm^2\right).\)

Diện tích tam giác ABC là: \(\dfrac{1}{2}\times AH\times BC\left(cm^2\right).\)

\(\Rightarrow S_{\Delta ABD}=\dfrac{3}{5}S_{\Delta ABC}.\)

Mà \(S_{\Delta ABD}=6cm^2.\)

\(\Rightarrow6=\dfrac{3}{5}S_{\Delta ABC}.\Rightarrow S_{\Delta ABC}=6:\dfrac{3}{5}=10cm^2.\)

 

phan ngọc linh chi
Xem chi tiết
phan ngọc linh chi
9 tháng 6 2019 lúc 21:13

giúp vs ạ

Mon
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 3 2021 lúc 22:47

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=18^2+20^2=724\)

hay \(BC=2\sqrt{181}cm\)

Vậy: \(BC=2\sqrt{181}cm\)

Nguyễn Hằng
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 3 2023 lúc 8:33

a: \(BC=\sqrt{18^2+24^2}=30\left(mm\right)\)=3(cm)

Xét ΔACB có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5=(AD+CD)/(3+5)=2,4/8=0,3

=>AD=0,9cm; CD=1,5cm

b: Xét ΔCED và ΔCAB có

CE/CA=CD/CB

góc C chung

=>ΔCED đồng dạng với ΔCAB

=>góc CED=góc CAB=90 độ

d: ΔCED đồng dạng với ΔCAB

=>ED/AB=CE/CA

=>ED/1,8=1,2/2,4

=>ED=0,9cm

c: ΔCED đồng dạng với ΔCAB

=>\(\dfrac{S_{CED}}{S_{CAB}}=\left(\dfrac{CE}{CA}\right)^2=\dfrac{1}{4}\)

 

Bin Mèo
Xem chi tiết
Mo Anime
8 tháng 4 2019 lúc 23:19

a xet ABC và DEC

 chung C

bAc=eDc=90 độ 

=> ABC và DEC đồng dạng (gg) (1)

b BC^2=3^2+5^2=34

=> BC= căn (34)

BD/DC=3/5

BC/DC=8/5

<=> căn 34/DC=8/5

=> DC=căn(34) *5/8

=> BD=căn(34) -DC=3(căn(34))/8

c Sabc=3*5/2=15/2

sabde= 15/2-15/2*17/32=225/64

Mai Hà
Xem chi tiết