câu 3 : cho 1 ABC có B =18 độ, trên BC lấy D sao cho góc BDA =150 độ , AD= 8cm,DC = 5cm Hãy tính (chính xác 1 chữ số thiệp phân ) a)độ dài đoạn BD. b) DTich tam giác ABC c) Tính sin DAC
Cho tam giác vuông tam giác vuông tại A, độ dài AB=18mm,AC=24mm.Kẻ phân giác BD của góc ABC
a)Tính độ dài của đoạn thẳng BC,AD,DC
b)Trên BC lấy điểm E sao cho CE=12mm. Chứng minh CED vuông
a: \(CB=\sqrt{18^2+24^2}=30\left(mm\right)\)
Xét ΔABC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5=24/8=3mm
=>AD=9mm; CD=15mm
b: CA=24mm; CB=30mm; CE=12mm; CD=15mm
=>CA/CE=CB/CD
=>ΔCAB đồng dạng với ΔCED
=>góc CED=90 độ
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC.
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
* Hình tự vẽ
a)
Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm
b)
Xét tam giác DBC, ta có:
BK là trung tuyến ứng với cạnh CD ( gt )
CA là trung tuyến ứng với cạnh BD ( AB = AD )
BK giao với CA tại E
=> E là trọng tâm của tam giác BDC
=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm
c)
Xét tam giác BDC, ta có:
CA là trung tuyến ứng với cạnh BD
CA là đường cao ứng với cạnh BD
=> Tam giác BDC cân tại C
=> CB = CD
Câu 5: Cho tam giác ABC có góc A = 50 độ, góc B = 60 độ, góc C = 70 độ. Hãy so sánh các cạnh của tam giác ABC
Theo đề ra: Góc A = 50 độ
Góc B = 60 độ
Góc C = 70 độ
=> Góc A < góc B < góc C
=> BC < AC < AB ( quan hệ giữa góc và cạnh đối diện trong một tam giác )
Cho tam giác ABC, điểm D nằm trên BC sao cho độ dài đoạn BD bằng 3/2 độ dài đoạn DC.
Biết diện tích tam giác ABD bằng 6cm2, hãy tính diện tích tam giác ABC.
Diện tích tam giác ABC là: cm2
(Viết dạng số thập phân)
Từ đỉnh A kẻ đường thẳng vuông góc với BC tại H.
\(BD=\dfrac{3}{2}DC.\Rightarrow DC=\dfrac{2}{3}BD.\)
Ta có: \(\text{BC = BD + DC = }\) \(BD+\dfrac{2}{3}BD=\dfrac{5}{3}BD.\)
\(\Rightarrow BD=\dfrac{3}{5}BC.\)
Diện tích tam giác ABD là: \(\dfrac{1}{2}\times AH\times BD=\dfrac{1}{2}\times AH\times\dfrac{3}{5}BC\left(cm^2\right).\)
Diện tích tam giác ABC là: \(\dfrac{1}{2}\times AH\times BC\left(cm^2\right).\)
\(\Rightarrow S_{\Delta ABD}=\dfrac{3}{5}S_{\Delta ABC}.\)
Mà \(S_{\Delta ABD}=6cm^2.\)
\(\Rightarrow6=\dfrac{3}{5}S_{\Delta ABC}.\Rightarrow S_{\Delta ABC}=6:\dfrac{3}{5}=10cm^2.\)
1. cho tam giác abc vuông a có cạnh ab=6cm, bc=10cm.các đường phân giác trong và ngoài của góc b cắt ac lần lượt ở d và e. tính các đoạn thẳng bd và be
2. cho tam giác abc vuông ở a, phân giác ad,đường cao ah. biết cd=68cm, bd=51cm. tính bh,hc
3. cho tam giác abc có góc b=60 độ, ac=13cm và bc-ba=7cm. tính độ dài các cạnh ab,bc
4. cho tam giác abc cân ở b và điểm d trên cạnh ac. biết góc bdc=60 độ, ad=3dm, dc=8dm. tính ab
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=18^2+20^2=724\)
hay \(BC=2\sqrt{181}cm\)
Vậy: \(BC=2\sqrt{181}cm\)
a: \(BC=\sqrt{18^2+24^2}=30\left(mm\right)\)=3(cm)
Xét ΔACB có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=2,4/8=0,3
=>AD=0,9cm; CD=1,5cm
b: Xét ΔCED và ΔCAB có
CE/CA=CD/CB
góc C chung
=>ΔCED đồng dạng với ΔCAB
=>góc CED=góc CAB=90 độ
d: ΔCED đồng dạng với ΔCAB
=>ED/AB=CE/CA
=>ED/1,8=1,2/2,4
=>ED=0,9cm
c: ΔCED đồng dạng với ΔCAB
=>\(\dfrac{S_{CED}}{S_{CAB}}=\left(\dfrac{CE}{CA}\right)^2=\dfrac{1}{4}\)
Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 5cm , đường phân giác AD. Đường vuông góc với DC cắt AC ở E .
a) Chứng minh rằng tam giác ABC ~ tam giác DEC
b) Tính độ dài các đoạn thẳng BC , BD
c) Tính độ dài AD Tính diện tích tam giác ABC và diện tích tứ giác ABD
a xet ABC và DEC
chung C
bAc=eDc=90 độ
=> ABC và DEC đồng dạng (gg) (1)
b BC^2=3^2+5^2=34
=> BC= căn (34)
BD/DC=3/5
BC/DC=8/5
<=> căn 34/DC=8/5
=> DC=căn(34) *5/8
=> BD=căn(34) -DC=3(căn(34))/8
c Sabc=3*5/2=15/2
sabde= 15/2-15/2*17/32=225/64
Bài 6 : Cho tam giác ABC vuông tại A, có AB = 3cm, AC = 5cm , đường phân giác AD. Đường vuông góc với DC cắt AC ở E .
a) Chứng minh rằng tam giác ABC ~ tam giác DEC
b) Tính độ dài các đoạn thẳng BC , BD
c) Tính độ dài AD Tính diện tích tam giác ABC và diện tích tứ giác ABDE