a: \(BC=\sqrt{18^2+24^2}=30\left(mm\right)\)=3(cm)
Xét ΔACB có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5=(AD+CD)/(3+5)=2,4/8=0,3
=>AD=0,9cm; CD=1,5cm
b: Xét ΔCED và ΔCAB có
CE/CA=CD/CB
góc C chung
=>ΔCED đồng dạng với ΔCAB
=>góc CED=góc CAB=90 độ
d: ΔCED đồng dạng với ΔCAB
=>ED/AB=CE/CA
=>ED/1,8=1,2/2,4
=>ED=0,9cm
c: ΔCED đồng dạng với ΔCAB
=>\(\dfrac{S_{CED}}{S_{CAB}}=\left(\dfrac{CE}{CA}\right)^2=\dfrac{1}{4}\)