Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
hà huy minh hiếu
Xem chi tiết
Huy Vu
7 tháng 11 2021 lúc 18:08

 á à thg hếu cx hỏi trên này cơ à XDDD

 

Trần Nguyễn Xuân Phát
Xem chi tiết
Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:01

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

Nguyễn Hoàng Minh
12 tháng 12 2021 lúc 9:05

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

Lê Văn Trường
25 tháng 12 2021 lúc 20:18

đúng rùi

Khách vãng lai đã xóa
khánh
Xem chi tiết
Rin Huỳnh
15 tháng 10 2021 lúc 17:42

b) Để 4x + 19 chia hết cho x + 1 thì 15 chia hết cho x + 1

--> x + 1 là ước của 15

TH1: x + 1 = 15 <=> x = 14

TH2: x + 1 = 1 <=> x = 0

TH3: x + 1 = 3 <=> x = 2

TH4: x + 1 = 5 <=> x= 4

Valentine
Xem chi tiết
Trần Thị Hoài Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 11 2022 lúc 22:16

a: \(B=3^1+3^2+...+3^{2010}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)

\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2008}\right)⋮13\)

b: \(C=5^1+5^2+...+5^{2010}\)

\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+...+5^{2008}\right)⋮31\)

c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{2008}\right)⋮57\)

Đặng Kiều Trang
Xem chi tiết
FL.Hermit
1 tháng 9 2020 lúc 15:09

\(=2^{200}\left(1+2+2^2\right)\)

\(=2^{200}.\left(1+2+4\right)\)

\(=2^{200}.7\)

=>     \(⋮7\)

VẬY TA CÓ ĐPCM.

Khách vãng lai đã xóa
Trần Hồ Hoàng Vũ
1 tháng 9 2020 lúc 15:10

Ta có: 2 ^200 + 2^201 + 2^202 

       =  2^200 ( 1+2+4)

       = 2^200.7 chia hết cho 7 ( đpcm)

 Chúc bạn học tốt nha^^~

Khách vãng lai đã xóa
Trần Công Mạnh
1 tháng 9 2020 lúc 15:12

Bg

Ta có: 2200 + 2201 + 2202 = 2200.1 + 2200.2 + 2200.22 

= 2200.(1 + 2 + 22)

= 2200.7 \(⋮\)7

=> 2200 + 2201 + 2202 \(⋮\)7

=> ĐPCM (Điều phải chứng minh)

Khách vãng lai đã xóa
nguyễn thị  thúy hân
Xem chi tiết
nguyển văn hải
23 tháng 6 2017 lúc 14:04

đề thiếu bạn ơi

hoặc đề sai

..............

uzumaki naruto
23 tháng 6 2017 lúc 14:09

bn viết thiếu đề nhé

A= 71 + 72 + 73 + 74 = (71+74)+(72+73) = 145 + 145 = 290 chia hết cho 5

=> A=........ chia hết cho 5

B=  106-57 = 26. 56 - 5= 56 ( 26 - 5) =(56 . 59) chia hết cho 59 => B chia hết cho 59

uzumaki naruto
23 tháng 6 2017 lúc 14:10

A bn viết thiếu chỗ 7 => 71 đấy

LyLy_Senpai
Xem chi tiết
EXO L BLINK ARMY
Xem chi tiết
Nguyễn Hà
Xem chi tiết
Hải Lý
3 tháng 12 2017 lúc 18:55

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

vutrion
28 tháng 10 2018 lúc 16:56

Chép hả Lý