Cho a,b,c là 3 cạnh của tam giác ABC. Biết a3(b-c)+b3(c-a)+c3(a-b)=0
CMR: tam giác ABC cân
Cho G=a3+b3+c3-3abc với a, b, c là độ dài 3 cạnh △ABC. Nếu G=0 thì △ABC là tam giác gì?
Do a;b;c là độ dài 3 cạnh của 1 tam giác nên \(a;b;c>0\)
\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Rightarrow a=b=c\)
Hay tam giác ABC đều
gọi a,b,c là độ dài 3 cạnh của tam giác ABC thoả mãn: a3+b3+c3=3abc.Chứng minh tam giác ABC đều.
a;b;c ;à độ dài 3 cạnh của tam giác \(\Rightarrow a;b;c>0\)
Ta có:
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) (do \(a+b+c>0\))
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)
Hay tam giác ABC đều
cho a,b,c là độ dài 3 cạnh của tam giác , chứng minh :
a3+b3+c3+2abc < a(b2+c2)+b(a2+c2)+c(a2+b2) < a3+b3+c3+3abc
mình cần gấp lắm , mn giúp mình với
Cho tam giác ABC. CMR:
1. Với M tùy ý thì aMA2+bMB2+cMC2≥abc
2. 2(a+b+c)(a2+b2+c2) ≥3 (a3+b3+c3+3abc)
1. Ta sẽ chứng minh dựa trên các kết quả quen thuộc sau về tâm I của đường tròn nội tiếp tam giác:
\(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\overrightarrow{0}\)
Và: \(a.IA^2+b.IB^2+c.IC^2=abc\)
Đẳng thức thứ nhất chỉ cần dựng hình bình hành AMIN, sau đó sử dụng định lý phân giác các góc B và C.
Đẳng thức thứ hai ta chỉ cần lấy 1 điểm P nào đó đối xứng I qua AC, gọi D, E, F là tiếp điểm của (I) với BC, AC, AB, sau đó sử dụng tỉ lệ diện tích:
\(\dfrac{S_{AEIF}}{S_{ABC}}=\dfrac{S_{AIK}}{S_{ABC}}=\dfrac{AI.AK}{AB.AC}=\dfrac{IA^2}{bc}\)
Tương tự và cộng lại ...
Từ đó:
\(a.MA^2+b.MB^2+c.MC^2=a.\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+b\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+c.\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2\)
\(=\left(a+b+c\right)MI^2+a.IA^2+b.IB^2+c.IC^2+2\overrightarrow{MI}\left(a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}\right)\)
\(=\left(a+b+c\right)MI^2+abc\ge abc\)
Dấu "=" xảy ra khi \(MI=0\) hay M là tâm đường tròn nội tiếp
2. Do a;b;c là độ dài 3 cạnh của tam giác, thực hiện phép thế Ravi:
Đặt \(\left(a;b;c\right)=\left(x+y;y+z;z+x\right)\)
BĐT cần chứng minh tương đương:
\(4\left(x+y+z\right)\left(x^2+y^2+z^2+xy+yz+zx\right)\ge3\left(x^3+y^3+z^3+3xyz+xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\right)\)
\(\Leftrightarrow x^3+y^3+z^3+3xyz\ge xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)\)
Đây là BĐT Schur bậc 3
Cho CosB.CosC=\(\dfrac{1}{4}\) và a2.(a-b-c)=a3-b3-c3. Chứng minh tam giác ABC đều
cho a b c là cạnh của một tam giác sao cho: a^2.(b-c) +b^2.(c-a) +c^2.(a-c)=0.
CMR: tam giác abc cân
Cho lăng trụ tam giác ABC.A' B' C' có đáy là tam giác vuông cân tại A,AA' = a 3 hình chiếu vuông góc của A’ lên (ABC) là trung điểm cạnh AC. Biết góc giữa AA' và mặt phẳng (ABC) bằng 45 0 . Thể tích của khối lăng trụ ABC.A' B' C' là:
A. a 3 6
B. a 3 3 4
C. 3 a 3 6 2
D. a 3 6 3
Cho a,b,c là 3 cạnh của tam giác.
cm : a3 + b3 + 3abc > c3
Mình đang cần gấp ạ!
\(a^3+b^3+3abc>c^3\)
\(\Leftrightarrow\)\(a^3+b^3-c^3+3abc>0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3-c^3-3ab\left(a+b\right)+3abc>0\)
\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+2ab+b^2+ac+bc\right)-3ab\left(a+b-c\right)>0\)
\(\Leftrightarrow\)\(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac+bc\right)>0\)
\(a,\)\(b,\)\(c\) là 3 cạnh tam giác
\(\Rightarrow\)\(a+b-c>0\)(BĐT tam giác)
\(a^2+b^2+c^2+Ab+ac+bc>0\) do a,b,c >0
suy ra: \(\left(a+b-c\right)\left(a^2+b^2+c^2+ab+ac\right)>0\)
\(\Rightarrow\)\(a^3+b^3-c^3+3abc>0\)
\(\Rightarrow\)\(a^3+b^3+3abc>c^3\)
P/S: phần BĐT mk trình bày kém, mong các bn giúp đỡ
Trong một tam giác thì: a + b > c
=> (a + b)3 > c3
<=> a3 + b3 + 3ab(a + b) > c3
mà a + b > c => 3ab(a + b) > 3abc
=> a3 + b3 + 3ab(a + b) > a3 + b3 + 3abc > c3
cho tam giác ABC cân tại A, M là trung điểm của BC. CMR: a, tam giác AMB= tam giác AMC. b, tính độ dài AM biết AB=10cm; BC=12cm c, kẻ đường trung tuyến CE cắt AM tại D. gọi I là điểm cách đều 3 cạnh của tam giác ABC. CMR: I;D;M thẳng hàng.
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng