So sánh
\(\dfrac{2^{2015}+3^2-1}{2^{2012}+1}\) và \(\dfrac{2^{2017}+2^2}{2^{2015}+1}\)
cho tổng T= \(\dfrac{2}{2^1}+\dfrac{3}{2^2}+\dfrac{4}{2^3}\) +...+\(\dfrac{2016}{2^{2015}}+\dfrac{2017}{2^{2016}}\)
so sánh T với 3
uk, cái bạn tên Phong Thần công nhận giỏi thật nha
Câu 1 :So sánh A và B
\(A=\dfrac{2^{2015} - 2}{2^{2016} + 1} B=\dfrac{2^{2016} - 2}{2^{2017} + 1}\)
Câu 2: Thực hiện phép tính
D = \(\dfrac{-1}{2} . 17,5 - \dfrac{2015}{2016}. 2018 + \dfrac{1}{2}.7,5+ \dfrac{2015}{2016}.2\)
So sánh (2^2015) + 1 / (2^2012) + 1 và (2^2017) + 1 / (2^2014) + 1
Có nhiều cách giải bài này. Hiện tôi có cách giải như sau tôi nghĩ là nó là ngắn nhất
Đặt: (2^2015)+1/(2^2012)+1 là A và (2^2017)+1/(2^2014)+1 là B
1/8A=(2^2015)+1/(2^2015)+8=(2^2015)+8-7/(2^2015)+8=1-7/(2^2015)+8
1/8B=(2^2017)+1/(2^2017)+8=(2^2017)+8-7/(2^2017)+8=1-7/(2^2017)+8
Vì 2^2015+8<2^2017+8 nên 7/(2^2015+8)>7/(2^2017)+8 nên 1-7/(2^2015)+8<1-7/(2^2017)+8 từ đó suy ra B>A hay 2^2017+1/(2^2014)+1>(2^2015)+1/(2^2012)+1
So Sánh:
2^2015+1/2^2012+1 và 2^2017+1/2^2014+1
So Sánh
2^2015+1/2^2012+1 và 2^2017+1/2^2014+1
2^2015+1/2^2012+1 < 2^2017+1/2^2014+1
22015+1/22012+1<22017+1/22014+1...........dung 100%
Ai h mk mk se h lai
So sánh \(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\) và \(B=2018\)
\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)
\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)
Rút gọn:
(\(\dfrac{2016}{1}+\dfrac{2015}{2}+...+\dfrac{2}{2015}+\dfrac{1}{2016}\)) : (\(\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\))
đặt phân số trên là A
tử là
(1+2015/2)+...+(1+2/2015)+(1+1/2016)+1
=2017/2+....+2017/2015+2017/2016+2017/2017
=2017.(1/2+...+1/2015+1/2016+1/2017)
=>A=\(\dfrac{2017.\left(\dfrac{1}{2}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}\right)}{\dfrac{1}{2}+...+\dfrac{1}{2015}+\dfrac{1}{2016}+\dfrac{1}{2017}}\)
Vậy A=2017
So sánh \(\frac{2^{2015}+1}{2^{2012}+1}\)và \(\frac{2^{2017}+1}{2^{2014}+1}\)
Giả sử A=\(\frac{2^{2015}+1}{2^{2012}+1}\)
-->\(\frac{1}{2^3}A=\frac{2^{2015}+1}{2^{2015}+8}\)
\(\frac{1}{8}A=\frac{2^{2015}+1}{2^{2015}+1}+\frac{2^{2015}+1}{7}\)
\(\frac{1}{8}A=1+\frac{2^{2015}+1}{7}\)
B=\(\frac{2^{2017}+1}{2^{2014}+1}\)
\(\frac{1}{2^3}B=\frac{2^{2017}+1}{2^{2017}+8}\)
\(\frac{1}{8}B=\frac{2^{2017}+1}{2^{2017}+1}+\frac{2^{2017}+1}{7}\)
\(\frac{1}{8}B=1+\frac{2^{2017}+1}{7}\)
Vì \(1+\frac{2^{2015}+1}{7}< 1+\frac{2^{2017}+1}{7}\)
nên \(\frac{1}{8}A< \frac{1}{8}B\)
-->A<B
-->\(\frac{2^{2015}+1}{2^{2012+1}}< \frac{2^{2017+1}}{2^{2014}+1}\)
so sánh:
\(\frac{2^{2015}+1}{2^{2012}+1}\)và \(\frac{2^{2017}+1}{2^{2014}+1}\)
đặt \(A=\frac{2^{2015}+1}{2^{2012}+1}\); \(B=\frac{2^{2017}+1}{2^{2014}+1}\)
ta có :\(A=\frac{2^{2015}+1}{2^{2012}+1}\)
\(\frac{1}{2^3}A=\frac{2^{2015}+1}{2^{2015}+8}=\frac{2^{2015}+8-7}{2^{2015}+8}=1-\frac{7}{2^{2015}+8}\)
\(B=\frac{2^{2017}+1}{2^{2014}+1}\)
\(\frac{1}{2^3}B=\frac{2^{2017}+1}{2^{2017}+8}=\frac{2^{2017}+8-7}{2^{2017}+8}=1-\frac{7}{2^{2017}+8}\)
vì 22015 + 8 < 22017 + 8 nên \(\frac{7}{2^{2015}+8}>\frac{7}{2^{2015}+8}\)
\(\Rightarrow1-\frac{7}{2^{2015}+8}< 1-\frac{7}{2^{2017}+8}\)
hay \(\frac{1}{2^3}A< \frac{1}{2^3}B\)
\(\Rightarrow A< B\)