\(\frac{2^{2015}+3^2-1}{2^{2012}+1}=\frac{2^{2015}+8}{2^{2012}+1 }=\frac{2^3(2^{2012}+1) }{2^{2012}+1} =2^3=8\)
\(\frac{2^{2017}+2^2}{2^{2015}+1}=\frac{2^2(2^{2015}+1) }{2^{2015}+1} =2^2=4\)
8>4
=>....
\(\frac{2^{2015}+3^2-1}{2^{2012}+1}=\frac{2^{2015}+8}{2^{2012}+1 }=\frac{2^3(2^{2012}+1) }{2^{2012}+1} =2^3=8\)
\(\frac{2^{2017}+2^2}{2^{2015}+1}=\frac{2^2(2^{2015}+1) }{2^{2015}+1} =2^2=4\)
8>4
=>....
[(2016/2017)-(3/2015)]÷[(-2)/3]-[(2012/2015)-(1/2017)]÷[(-2)/3]
Giúp mình với :
BT1: Tìm x, biết:
6) \(\dfrac{x+1}{2017}+\dfrac{x+2}{2016}=\dfrac{x+3}{2015}-1\)
tìm x biết
a) \(\dfrac{1}{2}x+2\dfrac{1}{2}=3\dfrac{1}{2}x-\dfrac{3}{4}\)
b) \(\dfrac{2}{3}x-\dfrac{2}{5}=\dfrac{1}{2}x-\dfrac{1}{3}\)
c) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x+1\right)=0\)
d) \(\dfrac{2}{3}-\dfrac{1}{3}\left(x-\dfrac{3}{2}\right)-\dfrac{1}{2}\left(2x+1\right)=5\)
e) \(\dfrac{x+2015}{5}+\dfrac{x+2016}{4}=\dfrac{x+2017}{3}+\dfrac{x+2018}{2}\)
tính
a) \(\left[\dfrac{0.8\div\left(\dfrac{4}{5}\cdot1025\right)}{0.64-1}+\dfrac{\left(1.08-\dfrac{2}{25}\right)\div\dfrac{4}{7}}{\left(6\dfrac{5}{7}-3\dfrac{1}{4}\right)\cdot2\dfrac{2}{17}}+\left(1.2\cdot0.5\right)\div\dfrac{4}{5}\right]\)
b) \(\left(0.2\right)^{-3}\left[\left(-\dfrac{1}{5}\right)^{-2}\right]^{-1}+\left[\left(\dfrac{1}{2}\right)^{-3}\right]^{-2}\div\left(2^{-3}\right)^{-1}-\left(0.175\right)^{-2}\)
c) \(2+\dfrac{1}{1+\dfrac{1}{2+\dfrac{1}{1+\dfrac{1}{2}}}}\)
d) \(\dfrac{1}{90}-\dfrac{1}{72}-\dfrac{1}{56}-\dfrac{1}{42}-\dfrac{1}{3}\)
e) \(\left(\dfrac{1}{3}\right)^{-1}-\left(-\dfrac{6}{7}\right)^0+\left(\dfrac{1}{2}\right)^2\div2\)
f) \(\dfrac{\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}-\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{64}-\dfrac{3}{256}}{1-\dfrac{1}{4}-\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
g) \(\dfrac{1}{-\left(2017\right)\left(-2015\right)}+\dfrac{1}{\left(-2015\right)\left(-2013\right)}+...+\dfrac{1}{\left(-3\right)\cdot\left(-1\right)}\)
h) \(\left(1-\dfrac{1}{1\cdot2}\right)+\left(1-\dfrac{1}{2\cdot3}+...+\left(1-\dfrac{1}{2017\cdot2018}\right)\right)\)
BT: Tìm x biết:
\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
So sánh
\(\dfrac{1}{5^1}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+....+\dfrac{1}{5^{2015}}\)
Với 1/4
Câu 1 : Tìm GTLN
a) \(A=\dfrac{2003}{\left(x-2\right)^2+\left(x-y\right)^6+3}\)
b) \(B=3-\left(2x+\dfrac{1}{3}\right)^6\)
c) \(C=\dfrac{x^{2016}+2017}{x^{2016}+2015}\)
Tính
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{2014}}+\dfrac{1}{3^{2015}}\)
Tìm x biết
a) |2-2011|+|x-2012|=1
b) |x-2010|+|x-2011|+|x-2012|=2
c) |x-2014|+|x-2015|+|x-2016|+|x-2017|=4