Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Hiiiii~
20 tháng 4 2017 lúc 18:09

Giải:

∆AHB và ∆KBH có

AH=KH(gt)

\(\widehat{AHB}\)=\(\widehat{KHM}\)

BH cạnh chung .

nên ∆AHB=∆KBH(c.g.c)

suy ra: \(\widehat{ABH}\)=\(\widehat{KBH}\)

Vậy BH là tia phân giác của góc B.

Tương tự ∆AHC =∆KHC(c.g.c)

Suy ra: \(\widehat{ACH}\)=\(\widehat{KCH}\)

Vậy CH là tia phân giác của góc C.

Thái Bình
26 tháng 11 2017 lúc 12:05

Trường hợp bằng nhau thứ hai của tam giác cạnh - góc - cạnh (c.g.c)

Thái Bình
26 tháng 11 2017 lúc 14:38

- Xét ΔAHB và ΔKBH có:

BH cạnh chung

Giải bài 32 trang 120 Toán 7 Tập 1 | Giải bài tập Toán 7

AH = KH

Nên ΔAHB = ΔKBH

Giải bài 32 trang 120 Toán 7 Tập 1 | Giải bài tập Toán 7

Vậy BH là tia phân giác của góc B

- Tương tự ΔAHC = ΔKHC (c.g.c)

Giải bài 32 trang 120 Toán 7 Tập 1 | Giải bài tập Toán 7

Vậy CH là tia phân giác của góc C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 1 2018 lúc 4:13

Giải bài 64 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

Vậy tứ giác EFGH là hình chữ nhật.

Lam Anh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 10 2018 lúc 12:27

Ta có:

Giải bài 32 trang 120 Toán 7 Tập 1 | Giải bài tập Toán 7

Lê Hùng Nguyễn
Xem chi tiết
huỳnh lê huyền trang
Xem chi tiết
túwibu
Xem chi tiết
túwibu
18 tháng 3 2020 lúc 20:17
làm đc câu nào thì làm
Khách vãng lai đã xóa
Loan
20 tháng 8 2021 lúc 14:22

tự nghĩ đi

Khách vãng lai đã xóa
tủn
Xem chi tiết
tủn
18 tháng 4 2019 lúc 9:35

Giải bài 32 trang 70 SGK Toán 7 Tập 2 | Giải toán lớp 7

Gọi M là giao điểm của hai tia phân giác của hai góc ngoài B và C của ∆ABC.

Kẻ MH ⊥ AB; MI ⊥ BC; MK ⊥ AC (như hình vẽ)

(H ∈ tia AB, I ∈ BC, K ∈ tia AC)

Theo định lí 1: Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.

Ta có: MH = MI (Vì M thuộc phân giác của góc B ngoài )

MI = MK ( Vì M thuộc phân giác của góc C ngoài )

Suy ra: MH = MK (cùng bằng MI)

Dựa vào định lí 2: Điểm nằm bên trong góc và cách đều hai cạnh của góc thì nằm trên tia phân giác của góc đó.

⇒ M thuộc phân giác của góc BAC (đpcm).

bui thai hoc
Xem chi tiết
ggjyurg njjf gjj
Xem chi tiết
ggjyurg njjf gjj
8 tháng 10 2019 lúc 22:07

Bài 64 (trang 100 SGK Toán 8 Tập 1): Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D cắt nhau như trên hình 91. Chứng minh rằng EFGH là hình chữ nhật.

Giải bài 64 trang 100 Toán 8 Tập 1 | Giải bài tập Toán 8

 
Nguyễn Thị Ngọc Ánh
8 tháng 10 2019 lúc 22:12

Theo giả thiết ABCD là hình bình hành nên ta có:

ˆDAB=ˆDCB,ˆADC=ˆABC         (1)

Theo định lí tổng các góc của một tứ giác ta có:

ˆDAB+ˆDCB+ˆADC+ˆABC=360o                (2)

Từ (1) và (2) ⇒ˆDAB+ˆABC=360o/2=180o

Vì AG là tia phân giác ˆDAB (giả thiết)

⇒⇒ ˆBAG=1/2ˆDAB (tính chất tia phân giác)

Vì BG là tia phân giác ˆABC (giả thiết)

⇒⇒  ˆABG=1/2ˆABC

Do đó: ˆBAG+ˆABG=1/2(ˆDAB+ˆABC)=1/2.1800=90o

Xét ΔAGB= có:

ˆBAG+ˆABG=90o   (3)

Áp dụng định lí tổng ba góc trong một tam giác vào tam giác AGBAGB ta có:

ˆBAG+ˆABG+ˆAGB=180o            (4)

Từ (3) và (4) ⇒ˆAGB=90o      

Chứng minh tương tự ta được: ˆDEC=ˆEHG=90o

Tứ giác EFGH có ba góc vuông nên là hình chữ nhật (dấu hiệu nhận biết hình chữ nhật)