Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Nguyên Quỳnh Như
Xem chi tiết
Lê Minh Anh
12 tháng 8 2016 lúc 10:51

 B= 12 - |3x + 2015| - |-3| = 12 - |3x + 2015| - 3 = 12 - 3 -  |3x + 2015| = 9 -  |3x + 2015|

Do |3x + 2015| \(\ge\)0    => -|3x + 2015|\(\le\)0    

=> 9 + (-|3x + 2015|) \(\le\)9      =>  9 -  |3x + 2015| \(\le\)9

Đẳng thức xảy ra khi:  |3x + 2015| = 0   => 3x + 2015 = 0    => 3x = 0 - 2015    => 3x = -2015   => x = \(\frac{-2015}{3}\)

Vậy giá trị lớn nhất của B là 9 khi x = \(\frac{-2015}{3}\)

Myka Hồ
Xem chi tiết
Iron Fe
Xem chi tiết
HT.Phong (9A5)
17 tháng 9 2023 lúc 9:37

a) Ta có: 

\(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\) Q có nghĩa khi:

\(\left(1-3x\right)\left(x+\dfrac{1}{2}\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}1-3x\ge0\\x+\dfrac{1}{2}\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}1-3x\le0\\x+\dfrac{1}{2}\le\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x\le1\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}3x\ge1\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\le\dfrac{1}{3}\\x\ge-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\ge\dfrac{1}{3}\\x\le-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{2}\le x\le\dfrac{1}{3}\\x\in\varnothing\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{1}{2}\le x\le\dfrac{1}{3}\)

b) Ta có: \(Q=\sqrt{\left(1-3x\right)\left(x+\dfrac{1}{2}\right)}\)

\(Q=\sqrt{x+\dfrac{1}{2}-3x^2-\dfrac{3}{2}x}\)

\(Q=\sqrt{-\left(3x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)}\)

\(Q=\sqrt{-3\left(x^2+\dfrac{1}{6}x-\dfrac{1}{6}\right)}\)

\(Q=\sqrt{-3\left(x^2+2\cdot\dfrac{1}{12}\cdot x+\dfrac{1}{144}-\dfrac{25}{144}\right)}\)

\(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\)

Mà: \(Q=\sqrt{-3\left(x+\dfrac{1}{12}\right)^2+\dfrac{25}{144}}\le\sqrt{\dfrac{25}{144}}=\dfrac{5}{12}\)

Dấu "=" xảy ra khi:

\(\Leftrightarrow-3\left(x+\dfrac{1}{12}\right)^2=0\)

\(\Leftrightarrow x+\dfrac{1}{12}=0\)

\(\Leftrightarrow x=-\dfrac{1}{12}\)

Vậy: \(Q_{max}=\dfrac{5}{12}.khi.x=-\dfrac{1}{12}\)

ỵyjfdfj
Xem chi tiết
Qasalt
Xem chi tiết
subjects
Xem chi tiết
Nguyễn Bá Minh Nhật
26 tháng 12 2022 lúc 14:50

đợi tý

when the imposter is sus
28 tháng 12 2022 lúc 21:07

a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min

Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)

\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)

Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)

Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0

b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min

Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)

Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)

Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0

Câu c) và d) thì tự làm, ko có rảnh =))))

Dương đình minh
18 tháng 8 2023 lúc 16:46

Đã trả lời rồi còn độ tí đồ ngull

Ngô Minh Đức
Xem chi tiết
Nguyễn Hoàng Minh
26 tháng 11 2021 lúc 22:12

\(A=-\left|3x-3\right|-\left(4x-4\right)^2-11\le-11\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}3x-3=0\\4x-4=0\end{matrix}\right.\Leftrightarrow x=1\)

Vui Nhỏ Thịnh
Xem chi tiết
Bùi Thế Hào
24 tháng 2 2018 lúc 11:56

Ta có: 2(3x+1)4\(\ge\)0 với mọi x

và 3/1-y/3\(\ge\)0 với mọi y

=> 2(3x+1)4+3/1-y/3+2\(\ge\)2*0 + 3*0 + 2=2

Để biểu thức đạt GTLN => 2(3x+1)4+3/1-y/3+2 đạt GTNN

GTNN của biểu thức 2(3x+1)4+3/1-y/3+2 là 2, đạt được khi \(\hept{\begin{cases}2\left(3x+1\right)^4=0\\3|1-y|^3=0\end{cases}}\)<=> \(\hept{\begin{cases}x=-\frac{1}{3}\\y=1\end{cases}}\)

Khi đó, GTLN của biểu thức là: \(\frac{3}{2}\)đạt được khi \(\hept{\begin{cases}x=-\frac{1}{3}\\y=1\end{cases}}\)

Nguyễn Anh Quân
24 tháng 2 2018 lúc 12:19

Vì 2.(3x+1)^4 và 3|1-y|^3 đều >= 0

=> mẫu số của phân số trên >= 2

=> biểu thức trên < =  3/2

Dấu "=" xảy ra <=> 3x+1 = 1-y = 0 <=> x=-1/3 và y=1

Vậy ............

Tk mk nha

Big City Boy
Xem chi tiết