Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh Thúy Phùng
Xem chi tiết
Giang シ)
3 tháng 4 2022 lúc 20:17

Bài 4 :

Tổng của 2 số là:

\(80\times2=160\)

Số lớn gấp 4 lần số bé => Số lớn\(=\dfrac{4}{5}\)tổng 2 số 

Số lớn là:

\(160\times\dfrac{4}{5}=128\)

 Số bé là:

\(180-128=72\)

Vũ Quang Huy
3 tháng 4 2022 lúc 20:43

undefined

Vũ Quang Huy
3 tháng 4 2022 lúc 20:43

undefined

Nguyễn Minh Đức
Xem chi tiết
Phạm Phương Linh
Xem chi tiết
Akai Haruma
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Akai Haruma
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Akai Haruma
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Xem chi tiết
Tuan
12 tháng 9 2018 lúc 12:34

k mk đi

ai k mk

mk k lại

thanks

trung nguyen
Xem chi tiết
Dao Phan Duy Khang
24 tháng 1 2016 lúc 11:54

Bài 1 : 

A đạt GTLN khi \(\frac{5}{4-x}\)đạt GTLN 

* Nếu 4 -x > 0 => \(\frac{5}{4-x}\)> 0            (1)

* Nếu 4 -x < 0 => \(\frac{5}{4-x}\)< 0            (2)

 

Từ (1) và (2) =>  \(\frac{5}{4-x}\)đạt GTLN khi 4 - x > 0 (a)

- Phân số  \(\frac{5}{4-x}\)> 0 có tử là 5 : không đổi nên  \(\frac{5}{4-x}\)đạt GTLN khi 4 - x đạt GTNN (b)

- Mà x thuộc Z => 4 - x thuộc Z (c)

- Từ (a), (b), và (c) => 4 - x = 1 => x = 3

Vậy x = 3 thì A có GTLN là \(\frac{5}{4-3}\)= 5

 

 

 

Nguyen Thu Trinh
Xem chi tiết
Thắng Nguyễn
16 tháng 6 2016 lúc 15:35

Vì bài dài nên mk làm hơi tắt tí nhé có chỗ nào ko hiểu thì nhắn lại với mình :))

1)  Ta thấy:\(5+\left|x-2\right|\le5+0=5\)\(B=8-\left|x+3\right|\le8-0=8\)

Vậy MaxA=5<=>x=2

2) Ta thấy:\(B=8-\left|x+3\right|\le8-0=8\)

Vậy MaxB=8<=>x=-3

3) Ta thấy:\(2\left|x-3\right|+5\ge0+5=5\)

Vậy MinC=5<=>x=3

4)Ta thấy:\(6-3\left|2x-1\right|\le6-0=6\)

Vậy MaxD=6<=>x=1/2

5)mấy câu 5,6,7 bạn dùng BĐT |a|+|b|>=|a+b| nhé

\(E=\left|x-2\right|+\left|5-x\right|\ge\left|x-2+5-x\right|=7\)

Vậy MinE=7<=>x=2 hoặc 5

6)\(F=\left|7-x\right|+\left|x+1\right|\ge\left|7-x+x+1\right|=8\)

Vậy MinF=8<=>x=7 hoặc -1

7)\(H=\left|x+3\right|+\left|x-2\right|\ge\left|x+3-x-2\right|=1\)

Vậy MinH=1<=>x=-3 hoặc 2

8)  I=|7-1|+|-2-1|

I=9 (đề bắt tìm Min và Max sao câu này ko có x nhỉ )

Trần Văn Thành
Xem chi tiết
Diệu Anh
Xem chi tiết
Toru
23 tháng 10 2023 lúc 18:02

a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)

Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).

\(---\)

b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)

Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).

\(---\)

c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)

\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)

Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).

HT.Phong (9A5)
23 tháng 10 2023 lúc 17:59

a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{2}{5}-x=0\)

\(\Rightarrow x=\dfrac{2}{5}\)

Vậy: ... 

b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)

Dấu "=" xảy ra:

\(x+\dfrac{2}{3}=0\)

\(\Rightarrow x=-\dfrac{2}{3}\)

Vậy: ...

c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)

Dấu "=" xảy ra:

\(\dfrac{7}{4}-x=0\)

\(\Rightarrow x=\dfrac{7}{4}\)

Vậy: ...

『dnv』KhaㅤNguyenㅤ(n0f...
23 tháng 10 2023 lúc 18:05

`#\text{ID01}`

a)

`Q = 9/2 + |2/5 - x|`

Vì `|2/5 - x| \ge 0` `AA` `x`

`=> 9/2 + |2/5 - x| \ge 9/2` `AA` `x`

`=>` GTNN của Q là `9/2` khi `|2/5 - x| = 0`

`=> 2/5 - x = 0`

`=> x = 2/5`

b)

`M = |x + 2/3| - 3/5`

Vì `|x + 2/3| \ge 0` `AA` `x`

`=> |x + 2/3| - 3/5 \ge -3/5` `AA` `x`

`=>` GTNN của M là `-3/5` khi `|x + 2/3| = 0`

`=> x + 2/3 = 0`

`=> x = -2/3`

c)

`N=-|7/4 - x| - 8`

Vì `|7/4 - x| \ge 0` `AA` `x`

`=> -|7/4 - x| \le 0` `AA` `x`

`=> -|7/4 - x| - 8 \le -8` `AA` `x`

`=>` GTLN của N là `-8` khi `|7/4 - x| = 0`

`=> 7/4 - x = 0`

`=> x = 7/4`

Cao Quỳnh Anh
Xem chi tiết