cho tam giác abc và điểm d nằm trong tác tam giác của chứng minh nếu ad = ac thì ab nhỏ hơn ac
cho tam giác ABC và điểm D nắm trong tam giác. Chứng minh rằng nếu AD=AB thì AB<AC
Không spam nha. Chương trình game xin tặng chương trình học online. Nhằm mục đích game được nhiều người chơi.
Thay mặt người đào tạo chương trình hôm nay : Có 200 suất học bỗng cho những học sinh tích cực hoạt động từ bây giờ ( Mỗi suất học bỗng là 100k). Nhận thưởng bằng cách vào google tìm kiếm.
Link như sau vào google hoặc cốc cốc để tìm kiếm:
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao
Copy cũng được nha
Bạn hack nick mình thu ib dưới vs nha giúp mk chuyện nàynn
Kẻ \(AH\perp BC(H\in BC)\)
Có HD và HC lần lượt là hình chiếu của AD,AC trên BC
Mà HD < HC
=> AD < AC \((\)quan hệ đường vuông góc và đường xiên\()\)
Do AB = AD \((gt)\)
=> AB < AC \((đpcm)\)
Chúc bạn học tốt :>
cho tam giác abc. Chứng minh nếu trong tam giác có điểm d sao cho ad=ab thì ab<ac
cho tam giác abc và điểm d nằm trong tác tam giác của chứng minh nếu ad = ac thì ab nhỏ hơn ac
Mình sửa lại đề bài nhé Cho tam giác ABC điểm D nằm trong tam giác ABC Chứng minh nếu AD = AC thì AC nhỏ hơn AB
Cho tam giác ABC . D nằm giữa B và C.
a , Chứng minh ( AB + AC - BC ) / 2 nhỏ hơn nửa chu vi tam giác ABC
b , Trên tia đối của DA lấy O . M và N lần lượt là trung điểm của AB và CO . Chứng minh MN nhỏ hơn hoặc bằng ( AC + BO ) / 2
Cho tam giác ABC (AB=AC), AD là tia phân giác của góc BAC (D thuộc BC). Trên AD lấy điểm M bất kì sao cho M nằm giữa A và D. a,Chứng minh tam giác ABM=tam giác ACM và chứng minh tam giác BMC là tam giác cân. b,Đường thẳng BM cắt cạnh AC của tam giác ABC tại E, đường thẳng CM cắt cạnh AB của tam giác ABC tại F. Chứng minh AD vuông góc với EF c,Trên tia đối của tia CA lấy điểm K (K khác C), đường thẳng BK cắt tia đối của tia DA tại N. Chứng minh KN lớn hơn BN.
a) Xét ΔABM và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAM}=\widehat{CAM}\)(AM là tia phân giác của \(\widehat{BAC}\))
AM chung
Do đó: ΔABM=ΔACM(c-g-c)
a) Ta có: ΔABM=ΔACM(cmt)
nên MB=MC(Hai cạnh tương ứng)
Xét ΔMBC có MB=MC(cmt)
nên ΔMBC cân tại M(Định nghĩa tam giác cân)
bài 4: cho tam giác ABC cân tại A ( góc A nhỏ hơn 90 độ và AB nhỏ hơn BC) kẻ BD là tia phân giác của góc ABC (D thuộc AC ). Trên cạnh BC lấy điểm E sao cho AB = BE
a, vẽ hình
b,chứng minh tam giác ABD= tam giác EBD từ đó suy ra AD=DE
c,so sánh AD và DC
b: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
=>góc BED=90 độ và DA=DE
c: DA=DE
DE<DC
=>DA<DC
Cho tam giác ABC vuông tại A và AB nhỏ hơn AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Vẽ tia phân giác góc BAC cắt BC tại E.
a) Chứng minh tam giác AEB = tam giác AED
b) Gọi F là giao điểm của DE và tia AB. Chứng minh tam giác EBF = tam giác EDC
c) Gọi M là trung điểm của BD, chứng minh tam giác AMB = tam giác AMD
d) Chứng minh 3 điểm A, M, E thẳng hàng.
a: AB<AC
=>góc B>góc C
góc ADB=góc DAC+góc ACD
góc ADC=góc BAD+góc ABD
mà góc ACD<góc ABD; góc BAD=góc CAD
nên góc ADB<góc ADC
b: Xét ΔABE có
AD vừa là đường cao, vừa là phân giác
=>ΔABE cân tại A
c: AD là phân giác
=>BD/AB=CD/AC
mà AB<AC
nên BD<CD
cho tam giác ABC có điểm D nằm trong tam giác và AD=AB.tia BD cắt đoạn AC ở I . H là trung điểm của BD a) chứng minh AH vuông góc với BD b)So sánh AD và AI c) chứng minh AB
a) Xét ΔABD có AB=AD(gt)
nên ΔABD cân tại A(Định nghĩa tam giác cân)
Ta có: ΔABD cân tại A(cmt)
mà AH là đường trung tuyến ứng với cạnh đáy BD(H là trung điểm của BD)
nên AH là đường cao ứng với cạnh BD(Định lí tam giác cân)
⇒AH⊥BD(đpcm)
Xét ∆ABD có: AD < AB + BD (bất đẳng thức tam giác) (1)
Xét ∆ACD có AD < AC + DC (bất đẳng thức tam giác) (2)
Cộng theo vế của (1) và (2) ta có:
AD + AD < AB + BD + AC + DC
2AD < AB + AC + (BD + DC)
2AD < AB +AC +BC
Suy ra: AD<AB+AC+BC2��<��+��+��2
Mà AB+AC+BC2��+��+��2 là chu vi của tam giác ABC.
Vậy AD luôn nhỏ hơn nửa chu vi của tam giác ABC.