tìm x và y là sô tự nhiên biết
xy+y=2x+3
1,tìm các số tự nhiên x sao cho các số có dạng sau đều là số tự nhiên
3x + 5 chia hết cho x - 1
2x + 8 chia hết cho 2x + 1
2, tìm x,y thuộc N biết
a, xy = 5 và x > y
b, (x + 1) ( y + 3) = 6
c, ( x - 3) (y + 1) = 7
d, xy + x + 3y = 5
tìm số tự nhiên x, y biết (2x+1)(y-3)=12, xy+2x-y=14
a) Tìm x, y là số tự nhiên biết: xy + x + 2y = 5
b) Tìm x, y là số nguyên để xy + 2x + 2y = -16
a) \(xy+x+2y=5\Leftrightarrow xy+x+2y+2=7\Leftrightarrow\left(y+1\right)\left(x+2\right)=7\)
Vì x,y là số tự nhiên nên \(x,y\in N\)\(x,y\ge0\)\(\Rightarrow y+1\ge1;x+2\ge2\)
Từ đó ta có :
\(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\)
b) \(xy+2x+2y=-16\Leftrightarrow xy+2y+2x+4=-12\Leftrightarrow\left(y+2\right)\left(x+2\right)=-12\)
Lần lượt xét từng trường hợp , ta được :
(x;y) = (-14; -1) ; (-8 ; 0) ; (-6 ; 1) ; (-5 ;2) ; (-4 ;4)
a) \(\left(x+2\right)\left(y+1\right)=7=1.7=7.1\)
Hoặc \(\hept{\begin{cases}x+2=7\\y+1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=0\end{cases}}}\in N\)
Hoặc\(\hept{\begin{cases}x+2=1\\y+1=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\notin N\\y=6\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;0\right)\)
b)\(\left(x+2\right)\left(y+2\right)=-1.12=-12.1=-2.6=-6.2=-3.4=-4.3\)
tương tự giải 6 TH là được
a) Ta có xy+x+2y=x(y+1)+2(y+1-1)=x(y+1)+2(y+1)-2=(y+1)(x+2)-2=5 ===> (y+1)(x+2)=7
Lại có: 7=1 . 7=(y+1)(x+2)
Ta có bảng giá trị:
y+1 | 1 | 7 |
x+2 | 7 | 1 |
y | 0 | 6 |
x | 5 | -1 |
câu b bạn làm tuơng tự nha
Tìm các cặp sô tự nhiên (x;y) thỏa mãn: \(x^6-x^4+2x^3+2x^2=y^2\)
x6 - x4 + 2x3 + 2x2 = y2 (1)
<=> x4(x - 1)(x + 1) + 2x2(x + 1) = y2
<=> x2(x3 - x2 + 2)(x + 1) = y2
<=> x2(x + 1)[x3 + 1 - x2 + 1] = y2
<=> x2(x + 1)(x + 1)(x2 - x + 1 - x + 1) = y2
<=> x2(x + 1)2(x2 - 2x + 2) = y2
Do x;y thuộc N và y2 là số chính phương; x2(x + 1)2 là số chính phương
=> x2 - 2x+ 2 = k2 (k thuộc N)
<=> k2 - (x - 1)2 = 1
<=> (k - x + 1)(k + x - 1) = 1
Lập bảng:
k - x + 1 | 1 |
k + x - 1 | 1 |
k | 1 |
x | 1 |
Với x = 1 thay vào pt (1) => y2 = 16 - 14 + 2.13 + 2.12 = 4 => y = 2
B1 : Giai pt nghiệm nguyên :
a, y^3=x^3+2x^2+1 và xy=z^2+2
b, x^3-y^3-z^3=3xyz và x^2 = 2.(y+z) ( x,y,z nguyên dương )
c,x^3+y^3=3xy+3
d,x^4-x^2+2x+2=y^2
B2:a, Tìm các số nguyên dương tm : \(\frac{x-y.\sqrt{2011}}{y-z.\sqrt{2011}}\)là số hữu tỉ và x^2+y^2+z^2 là các sô nguyên tố
b, Tìm các số tự nhiên x,y : 2^x + 57 = y^2
Ai làm nhanh và đúng nhất mk sẽ cho 3 tick
Hạn ngày 17/11/2017
Bài 1: Tìm số tự nhiên n lớn nhất sao cho khi cho 364,414,539 cho n được 3 số dư bằng nhau.
Bài 2: Tìm x,y là số nguyên biết:
a)xy+3x=-2y-6
b)xy=x+y
c)xy=x-y
d)xy+y=1-2x
a)xy+3x=-2y-6
xy+3x-2y-6=0
x(y+3)-2(y+3)=0
(y+3)(x-2)=0
=>y+3=0 và x-2=0
y=-3 và x=2
Bài 10. Tìm số tự nhiên n, biết rằng: 1 + 2 + 3 + ..... + n = 820
Bài 11. Tìm các số tự nhiên x, y, sao cho:
a/ (2x+1)(y-3) = 10
b/ (3x-2)(2y-3) = 1
c/ (x+1)(2y-1) = 12
d/ x + 6 = y(x-1)
e/ x-3 = y(x+2)
f/ x + 2y + xy = 5
g/ 3x + xy + y = 4
Bài 12. Tìm số nguyên tố p sao cho:
a/ p + 2 và p + 4 là số nguyên tố
b/ p + 94 và p + 1994 cũng là số nguyên tố
bài 1:tìm cặp số tự nhiên x,y biết:
1) (x+5)(y-3) = 15
2) xy+2x +3y = 0
3) xy - 2x + y = 9
bài 2:cho A = 2 + 22 + 23 + ...... + 260. chứng tỏ rằng: A chia hết cho 3, 5, 7
mik cần gấp ;-;
a) Tìm số tự nhiên x, y biết: (2x+1)(y-3)=12
b) Tìm số tự nhiên x biết: 2x+2x+1+2x+2+...+2x+2015=22019-8
c) So sánh: 3625 và 2536
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)