Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Quang Chung
Xem chi tiết
dia fic
Xem chi tiết
Hải Anh
27 tháng 12 2020 lúc 9:59

c=c.1 thay 1 bằng a+b+c xong cô si

 

Đỗ Thế Hưng
Xem chi tiết
Phùng Minh Quân
21 tháng 3 2018 lúc 20:25

Ta có : 

\(a+b+c=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)^2=0^2\)

\(\Leftrightarrow\)\(a^2+b^2+c^2+\left(2ab+2bc+2ac\right)=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2=-\left(2ab+2bc+2ac\right)\)

Vì \(a^2+b^2+c^2\ge0\)

Nên \(-\left(2ab+2bc+2ac\right)\ge0\)

\(\Rightarrow\)\(2ab+2bc+2ac\le0\) 

\(\Rightarrow\)\(2\left(ab+bc+ac\right)\le0\)

\(\Rightarrow\)\(ab+bc+ac\le0\) ( đpcm ) 

Công thức lớp 8 chứ ko phải lớp 6 nhé 

Chúc bạn học tốt ~ 

Phạm Mỹ Châu
20 tháng 3 2018 lúc 21:25

cm bđt ab+bc+ca \(\le\)\(\frac{\left(a+b+c\right)^2}{3}\)(biến đổi tương đương )

\(\Rightarrow\)ab+bc+ca \(\le\frac{0^2}{3}=0\)-đpcm

Đỗ Thế Hưng
21 tháng 3 2018 lúc 19:51

Giảichi tiết gúp mk

Sherry
Xem chi tiết
tống thị quỳnh
23 tháng 2 2018 lúc 20:31

Xin lỗi xíu nha cái chỗ suy ra 2ab+2bc+2ac >/= 0 bị đánh lộn dấu đổi lại thành ab=bc+ca</=0 hộ nhé

tống thị quỳnh
18 tháng 4 2017 lúc 20:58

em dùng tính chất tổng quát này nè \(x^2\ge0\)với mọi x

như vậy ta có a+b+c=0\(\Rightarrow\left(a+b+c\right)^2=0\)\(\Leftrightarrow a^{2^{ }}+b^2+c^2+2ab+2bc+2ca=0\)mà ta luôn có \(a^2\ge0\)với mọi a;\(b^2\ge0\)với mọi b;\(c^2\ge0\)nên suy ra \(a^2+b^2+c^2\ge0\forall a,b,c\)mà \(a^2+b^2+c^2+2ab+2bc+2ca=0\Rightarrow2ab+2bc+2ca\ge0\)\(\Rightarrow\)ab+bc+ca\(\ge\)0.dấu bằng xảy ra khi và chỉ khi a=b=c=0

Trần Lan Bảo Nhi
22 tháng 4 2018 lúc 20:22

a+b+c=0\Rightarrow (a+b+c)2=0(a+b+c)2=0
\Rightarrow a2+b2+c2+2(ab+bc+ca)=0a2+b2+c2+2(ab+bc+ca)=0
\Rightarrow 2(ab+bc+ca)=−(a2+b2+c2)2(ab+bc+ca)=−(a2+b2+c2).
Mà a2+b2+c2a2+b2+c2\geq 0\Rightarrow −(a2+b2+c2)−(a2+b2+c2)\leq 0.
Do đó: 2(ab+bc+ca)2(ab+bc+ca)\leq 0
\Rightarrow ab+bc+caab+bc+ca\leq 0.

Anh Mai
Xem chi tiết
Trung
24 tháng 9 2015 lúc 10:55

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

Đinh Tuấn Việt
24 tháng 9 2015 lúc 10:55

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).

Vậy điều giả sử trên là sai, 
Do đó a,b,c là 3 số dương.

phạm minh khuê
Xem chi tiết
ha quang minh
Xem chi tiết
TítTồ
Xem chi tiết
Ichigo Hollow
Xem chi tiết
Thanh Tùng DZ
27 tháng 4 2020 lúc 8:24

Xét các trường hợp 

TH1 :có 1 số < 0, 2 số > 0.

giả sử a < 0, b,c > 0

\(\Rightarrow bc>0\)

Mà a < 0 \(\Rightarrow abc< 0\)( trái với gt )

\(\Rightarrow\)loại

TH2 : 2 số < 0, 1 số > 0

giả sử b,c < 0, a > 0

\(\Rightarrow bc>0,b+c< 0\)

Mà a + b + c > 0 nên \(a>-\left(b+c\right)>0\)

\(\Rightarrow a\left(b+c\right)< -\left(b+c\right)\left(b+c\right)=-\left(b+c\right)^2< 0\)

Nên ab + bc + ac = a ( b + c ) + bc < -(b+c)2 + bc = - ( b2 + c2 + bc ) < 0  ( trái với giả thiết )

TH3 :  3 số a,b,c < 0

\(\Rightarrow abc< 0\)( trái với giả thiết )
Vậy cả 3 số a,b,c đều lớn hơn 0

Khách vãng lai đã xóa
Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 8 2021 lúc 21:11

\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)

\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự và cộng lại:

\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)