cmr voi moi so nguyen a thi (a+2)^2-(a-2)^2 chia het cho 4
chung minh rang voi moi so nguyen a thi (a +2)^2 - (a - 2)^2 chia het cho 4
Đặt A = (a + 2)2 - (a - 2)2 (Hằng đẳng thức số 3)
=> A = (a + 2 - a + 2)(a + 2 + a - 2)
=> A = 4.2a \(⋮4\)với mọi a
Vậy (a + 2)2 - (a - 2)2 chia hết cho 4 (Điều phải chứng minh)
= (a+2-a+2)(a+2+a-2)
= 4.2a=> chia hết cho 4 nhé
hay chung minh rang voi moi so nguyen a thi (a+2)2-(a-2)2 chia het cho 4
Ta có :
\(\left(a+2\right)^2-\left(a-2\right)^2\)
\(=\left(a+2-a+2\right)\left(a+2+a-2\right)\)
\(=4.2a\)
\(=8a\)
Mà \(a\in Z\Leftrightarrow8a⋮4\)
\(\Leftrightarrow\left(a+2\right)^2-\left(a-2\right)^2⋮4\left(đpcm\right)\)
CMR voi moi so nguyen duong n thi B=3^n+2 -2^n+2 +3^n -2^n chia het cho 10
Ta có:
3^n+2-2^n+2+3^n-2^n
=3^n+2+3^n-(2^n+2+2^n)
=3^n(3^2 +1)-2^n(2^2 +1)
=3^n.10-2^n.5=3^n.10-2^(n-1).10
=(3^n-2^(n-1)).10 chia het cho 10
Tick nhé
Cho A=n3+3n2+2n
a, CMR A chia het cho 3 voi moi so nguyen n
b, Tim gia tri nguyen duong cua n voi n<10 de A chia het cho 15
Cho A=n3+3n2+2n
a, CMR A chia het cho 3 voi moi so nguyen n
b, Tim gia tri nguyen duong cua n voi n<10 de A chia het cho 15
cho a va b la hai so tu nhien. biet a chia cho 5 du 1 ; b chia cho 5 du 4. chung minh (b-a)(b+a) chia cho 4
chung minh 2n^2(n+1)-2n(n^2+n-3) chia het cho 6 voi moi so nguyen n
chung minh n( 3-2n)-(n-1)(1+4n)-1 chia het cho 6 voi moi so nguyen n
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
chung minh rang voi moi so nguyen n thi n(n^2+1)(n^2+4) chia het cho 5
Voi a,b la cac so nguyen . Chung minh rang neu 4a^2+3ab-11b^2 chia het cho 5 thi a^4-b^4 chia het cho 5
A=4a^2+8ab+4b^2 - 5ab-15b^2 = 4(a+b)^2 - 5b(a+3b) ta thấy -5b(a+3b) luôn là 1 số chia hết 5
Vậy A chia hết 5 thì (a+b) cũng chia hết 5 => B = a^4-b^4 = (a^2+b^2)(a+b)(a-b) cũng chia hết 5
CMR voi a,b,c nguyen thi abc(a^2-b^2)(b^2-c^2)(c^2-a^2) thi luon chia het cho 360