Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Thị Trà My
Xem chi tiết
tunskail
Xem chi tiết
Akai Haruma
13 tháng 10 2023 lúc 23:32

Lời giải:

a. Vì $ABCD$ là hình bình hành nên $AB=CD$

$\Rightarrow \frac{1}{2}AB=\frac{1}{2}CD$
$\Rightarrow AF=CE(1)$

Mặt khác: $AB\parallel CD\Rightarrow AF\parallel CE(2)$

Từ $(1); (2)\Rightarrow AECF$ là hình bình hành.

b. 

B, E,F thẳng hàng??? Bạn xem lại đề.

Nguyen Minh Hieu
Xem chi tiết
Babi girl
8 tháng 8 2021 lúc 9:37

Do E là điểm bất kì trên AB, mà E đối xứng với F qua O => F nằm trên DC⇒ D,F,C thẳng hàng

Vũ Tuấn Minh
Xem chi tiết
Nhữ_Thị_Ngọc_Hà
Xem chi tiết
Nhữ_Thị_Ngọc_Hà
26 tháng 12 2020 lúc 12:55
Giúp mình đi mọi người
Khách vãng lai đã xóa
Hân Nguyễn
Xem chi tiết
Bối rối
2 tháng 12 2016 lúc 21:05

Do E là điểm bất kì trên AB, mà E đx vs F qua O => F nằm trên DC =>D,F,C thẳng hàng

Đoàn Phương Linh
Xem chi tiết
Đoàn Phương Linh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 9 2019 lúc 6:10

a) Ta chứng minh A N = C M A N ∥ C M ⇒ A M C N  là hình bình hành.

Vì O là giao điểm của AC và BD, ABCD là hình chữ nhật nên O là trung điểm AC

Do ANCM là hình bình hành có AC và MN là hai đường chéo

 

⇒  O là trung điểm MN

b. Ta có: EM//AC nên E M D ^ = A C D ^ (2 góc so le trong)

NF//AC nên B N F ^ = B A C ^  (2 góc so le trong)

Mà A C D ^ = B A C ^  (vì AB//DC, tính chất hình chữ nhật)

⇒ E M D ^ = B N F ^

Từ đó chứng minh được  ∆ E D M   =   ∆ F B N   ( g . c . g )

⇒ E M = F N

 

Lại có EM//FN (vì cùng song song với AC)

Nên tứ giác ENFM là hình bình hành

c) Tứ giác ANCM là hình thoi Û AC ^ MN tại O Þ M, N lần lượt là giao điểm của đường thẳng đi qua O, vuông góc AC và cắt CD, AB.

Khi đó M và N là trung điểm của CD và AB.

d) Ta chứng minh được DBOC cân tại O ⇒ O C B ^ = O B C ^   v à   N F B ^ = O C F ^  (đv) Þ DBFI cân tại I Þ IB = IF  (1)

Ta lại chứng minh được DNIB cân tại I Þ IN = IB  (2)

Từ (1) và (2) Þ I là trung điểm của NF.

Dũng Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2022 lúc 21:58

a Xét tứ giác DEBF có

BE//DF

BE=FD

Do đó; DEBF là hình bình hành

=>DB cắt EF tại trung điểm của mỗi đường(1)

b: Vì ABCD là hình bình hành

nên AC cắt BD tại trung điểm của mõi đường(2)

Từ (1), (2) suy ra AC,BD,EF đồng quy

=>E,O,F thẳng hàng