(2x-5)2016(3y+4)2018< hoặc bằng0
Tìm x,y
(2x-5)^2016 + (3y+4)^2018 <=0
\(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}\le0\)
\(\Leftrightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}\)
Tìm x,y:
(2x-5)2020+(3y+4)2018 < hoặc = 0
\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0\left(1\right)\)
Ta có: \(\hept{\begin{cases}\left(2x-5\right)^{2020}\ge0;\forall x,y\\\left(3y+4\right)^{2018}\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\ge0;\forall x,y\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-5\right)^{2020}=0\\\left(3y+4\right)^{2018}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}\)
Vậy...
tìm x,y biết [2x-5]^2016+[3y+4]^2014<hoặc=0
[2x-5]^2016+[3y+4]^2014<hoặc=0
=>2x-5=0 và 3y+4=0 (vì [2x-5]^2016+[3y+4]^2014>hoặc=0 với mọi x;y)
=>x=5/2 và y=-4/3
vậy x=5/2 và y=-4/3
Tìm x,y:
(2x-5)2020+(3y+4)2018 < hoặc = 0
\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0\)
Ta có:
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2020}\ge0\\\left(3y+4\right)^{2018}\ge0\end{matrix}\right.\forall xy.\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\ge0\) \(\forall xy.\)
Mà \(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0.\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}=0\)
\(\Rightarrow\left(2x-5\right)+\left(3y+4\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2x=5\\3y=-4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)
Chúc bạn học tốt!
Ta có:
(2x+5)2020 ≥ 0 với ∀ x
(3y+4)2018 ≥ 0 với ∀ y
⇒ (2x+5)2020 + (3y+4)2018 ≥ 0 với ∀ x, y
Mà (2x+5)2020 + (3y+4)2018 ≤ 0
⇒ (2x+5)2020 + (3y+4)2018 = 0
⇒ \(\left[{}\begin{matrix}\left(2x+5\right)^{2020}=0\\\left(3y+4\right)^{2018}=0\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}2x+5=0\\3y+4=0\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}2x=-5\\3y=-4\end{matrix}\right.\) ⇒ \(\left[{}\begin{matrix}x=\frac{-5}{2}\\y=\frac{-4}{3}\end{matrix}\right.\)
Vậy...
Học tốt❤
Tìm các số hữu tỉ x,y,z biết: \(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}\le0\)
\(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}\le0\)
Ta có:
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2016}\ge0\\\left(3y+4\right)^{2018}\ge0\end{matrix}\right.\forall x.\)
\(\Rightarrow\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-5\right)^{2016}=0\\\left(3y+4\right)^{2016}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=0+5=5\\3y=0-4=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)
Chúc bạn học tốt!
(2.x-5)^2000+(3.y+4) bé hơn hoặc bằng0
Tìm x,y biết (2x-5)^2014+(3y+)^2016 < hoặc =0
Tìm giá trị nhỏ nhất
P = 2018/x^2+2x+2017
Q = a^2018+2017/a^2018+2015
A = (x-3y)^2020+(y-2018)^2018
B = (x+y-5)^8+(x-2y)^4+2016
C = \x-2017\+\x-2018\
D = \x-2010\+\x-2011\+\x+2012\
Tìm đa thức M biết rằng:M+(5x^2-2xy)=6x^2+9xy-y^2.Tính giá trị của M khi x,y thỏa mãn (2x-5)^2018+(3y+4)^2020 <hoặc=0
\(\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}\le0\\ \Leftrightarrow\left(2x-5\right)^{2018}+\left(3y+4\right)^{2020}=0\\ \Leftrightarrow\left\{{}\begin{matrix}\left(2x-5\right)^{2018}=0\\\left(3y+4\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{5}{2}\\y=-\dfrac{4}{3}\end{matrix}\right.\\ \Leftrightarrow M=6x^2+9xy-y^2-5x^2+2xy=x^2+11xy-y^2\\ \Leftrightarrow M=\dfrac{25}{4}-11\cdot\dfrac{4}{3}\cdot\dfrac{5}{2}-\dfrac{16}{9}=\dfrac{25}{4}-\dfrac{110}{3}-\dfrac{16}{9}=-\dfrac{1159}{36}\)